Approximation of Minimax Solutions of Hamilton—Jacobi Functional Equations for Time-Delay Systems
- Авторлар: Gomoyunov M.I.1, Lukoyanov N.Y.1, Plaksin A.R.1
-
Мекемелер:
- Krasovskii Institute of Mathematics and Mechanics
- Шығарылым: Том 304, № Suppl 1 (2019)
- Беттер: S68-S75
- Бөлім: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/175770
- DOI: https://doi.org/10.1134/S0081543819020081
- ID: 175770
Дәйексөз келтіру
Аннотация
A minimax solution of the Cauchy problem for a functional Hamilton-Jacobi equation with coinvariant derivatives and a condition at the right end is considered. Hamilton-Jacobi equations of this type arise in dynamical optimization problems for time-delay systems. Their approximation is associated with additional issues of a valid transition from an infinite-dimensional functional argument of the desired solution to a finite-dimensional argument. Earlier, the schemes based on the piecewise linear approximation of the functional argument and the correctness properties of minimax solutions were studied. In this paper, a scheme for the approximation of Hamilton-Jacobi functional equations with coinvariant derivatives by usual Hamilton-Jacobi partial differential equations is proposed and justified. The scheme is based on the approximation of the characteristic functional-differential inclusions used in the definition of the desired minimax solution by ordinary differential inclusions.
Авторлар туралы
M. Gomoyunov
Krasovskii Institute of Mathematics and Mechanics
Хат алмасуға жауапты Автор.
Email: m.i.gomoyunov@gmail.com
Ресей, Yekaterinburg, 620990
N. Lukoyanov
Krasovskii Institute of Mathematics and Mechanics
Хат алмасуға жауапты Автор.
Email: nyul@imm.uran.ru
Ресей, Yekaterinburg, 620990
A. Plaksin
Krasovskii Institute of Mathematics and Mechanics
Хат алмасуға жауапты Автор.
Email: a.r.plaksin@gmail.com
Ресей, Yekaterinburg, 620990
Қосымша файлдар
