On Expanding Neighborhoods of Local Universality of Gaussian Unitary Ensembles


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The classical universality theorem states that the Christoffel–Darboux kernel of the Hermite polynomials scaled by a factor of \(1/\sqrt n\) tends to the sine kernel in local variables \(\tilde x,\tilde y\) in a neighborhood of a point \(x^*\in(-\sqrt 2,\sqrt 2)\)). This classical result is well known for \(\tilde x,\tilde y\in{K}\Subset\mathbb{R}\). In this paper, we show that this classical result remains valid for expanding compact sets K = K(n). An interesting phenomenon of admissible dependence of the expansion rate of compact sets K(n) on x* is established. For \(x^*\in(-\sqrt 2,\sqrt 2)\backslash\left\{0\right\}\)) and for x* = 0, there are different growth regimes of compact sets K(n). A transient regime is found.

作者简介

M. Lapik

Keldysh Institute of Applied Mathematics

编辑信件的主要联系方式.
Email: mashalapik@gmail.com
俄罗斯联邦, Miusskaya pl. 4, Moscow, 125047

D. Tulyakov

Keldysh Institute of Applied Mathematics

Email: mashalapik@gmail.com
俄罗斯联邦, Miusskaya pl. 4, Moscow, 125047

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018