On Expanding Neighborhoods of Local Universality of Gaussian Unitary Ensembles


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The classical universality theorem states that the Christoffel–Darboux kernel of the Hermite polynomials scaled by a factor of \(1/\sqrt n\) tends to the sine kernel in local variables \(\tilde x,\tilde y\) in a neighborhood of a point \(x^*\in(-\sqrt 2,\sqrt 2)\)). This classical result is well known for \(\tilde x,\tilde y\in{K}\Subset\mathbb{R}\). In this paper, we show that this classical result remains valid for expanding compact sets K = K(n). An interesting phenomenon of admissible dependence of the expansion rate of compact sets K(n) on x* is established. For \(x^*\in(-\sqrt 2,\sqrt 2)\backslash\left\{0\right\}\)) and for x* = 0, there are different growth regimes of compact sets K(n). A transient regime is found.

Авторлар туралы

M. Lapik

Keldysh Institute of Applied Mathematics

Хат алмасуға жауапты Автор.
Email: mashalapik@gmail.com
Ресей, Miusskaya pl. 4, Moscow, 125047

D. Tulyakov

Keldysh Institute of Applied Mathematics

Email: mashalapik@gmail.com
Ресей, Miusskaya pl. 4, Moscow, 125047

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2018