On Expanding Neighborhoods of Local Universality of Gaussian Unitary Ensembles
- Autores: Lapik M.A.1, Tulyakov D.N.1
-
Afiliações:
- Keldysh Institute of Applied Mathematics
- Edição: Volume 301, Nº 1 (2018)
- Páginas: 170-179
- Seção: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/175571
- DOI: https://doi.org/10.1134/S0081543818040132
- ID: 175571
Citar
Resumo
The classical universality theorem states that the Christoffel–Darboux kernel of the Hermite polynomials scaled by a factor of \(1/\sqrt n\) tends to the sine kernel in local variables \(\tilde x,\tilde y\) in a neighborhood of a point \(x^*\in(-\sqrt 2,\sqrt 2)\)). This classical result is well known for \(\tilde x,\tilde y\in{K}\Subset\mathbb{R}\). In this paper, we show that this classical result remains valid for expanding compact sets K = K(n). An interesting phenomenon of admissible dependence of the expansion rate of compact sets K(n) on x* is established. For \(x^*\in(-\sqrt 2,\sqrt 2)\backslash\left\{0\right\}\)) and for x* = 0, there are different growth regimes of compact sets K(n). A transient regime is found.
Sobre autores
M. Lapik
Keldysh Institute of Applied Mathematics
Autor responsável pela correspondência
Email: mashalapik@gmail.com
Rússia, Miusskaya pl. 4, Moscow, 125047
D. Tulyakov
Keldysh Institute of Applied Mathematics
Email: mashalapik@gmail.com
Rússia, Miusskaya pl. 4, Moscow, 125047
Arquivos suplementares
