On first integrals of geodesic flows on a two-torus
- Авторлар: Taimanov I.A.1,2
-
Мекемелер:
- Sobolev Institute of Mathematics
- Faculty of Mechanics and Mathematics
- Шығарылым: Том 295, № 1 (2016)
- Беттер: 225-242
- Бөлім: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/174176
- DOI: https://doi.org/10.1134/S0081543816080150
- ID: 174176
Дәйексөз келтіру
Аннотация
For a geodesic (or magnetic geodesic) flow, the problem of the existence of an additional (independent of the energy) first integral that is polynomial in momenta is studied. The relation of this problem to the existence of nontrivial solutions of stationary dispersionless limits of two-dimensional soliton equations is demonstrated. The nonexistence of an additional quadratic first integral is established for certain classes of magnetic geodesic flows.
Авторлар туралы
I. Taimanov
Sobolev Institute of Mathematics; Faculty of Mechanics and Mathematics
Хат алмасуға жауапты Автор.
Email: taimanov@math.nsc.ru
Ресей, pr. Akademika Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090
Қосымша файлдар
