


Vol 295, No 1 (2016)
- Year: 2016
- Articles: 18
- URL: https://journals.rcsi.science/0081-5438/issue/view/10639
Article
Integrable and non-integrable structures in Einstein-Maxwell equations with Abelian isometry group G2
Abstract
We consider the classes of electrovacuum Einstein–Maxwell fields (with a cosmological constant) for which the metrics admit an Abelian two-dimensional isometry group G2 with nonnull orbits and electromagnetic fields possess the same symmetry. For the fields with such symmetries, we describe the structures of the so-called non-dynamical degrees of freedom, whose presence, just as the presence of a cosmological constant, changes (in a strikingly similar way) the vacuum and electrovacuum dynamical equations and destroys their well-known integrable structures. We find modifications of the known reduced forms of Einstein–Maxwell equations, namely, the Ernst equations and the self-dual Kinnersley equations, in which the presence of non-dynamical degrees of freedom is taken into account, and consider the following subclasses of fields with different non-dynamical degrees of freedom: (i) vacuum metrics with cosmological constant; (ii) space–time geometries in vacuum with isometry groups G2 that are not orthogonally transitive; and (iii) electrovacuum fields with more general structures of electromagnetic fields than in the known integrable cases. For each of these classes of fields, in the case when the two-dimensional metrics on the orbits of the isometry group G2 are diagonal, all field equations can be reduced to one nonlinear equation for one real function α(x1, x2) that characterizes the area element on these orbits. Simple examples of solutions for each of these classes are presented.



On fourth-degree polynomial integrals of the Birkhoff billiard
Abstract
We study the Birkhoff billiard in a convex domain with a smooth boundary γ. We show that if this dynamical system has an integral which is polynomial in velocities of degree 4 and is independent with the velocity norm, then γ is an ellipse.



Generalizations of the Kovalevskaya case and quaternions
Abstract
This paper provides a detailed description of various reduction schemes in rigid body dynamics. The analysis of one of such nontrivial reductions makes it possible to put the cases already found in order and to obtain new generalizations of the Kovalevskaya case to e(3). Note that the indicated reduction allows one to obtain in a natural way some singular additive terms that were proposed earlier by D.N. Goryachev.



Degenerate billiards
Abstract
In an ordinary billiard system, trajectories of a Hamiltonian system are elastically reflected after a collision with a hypersurface (scatterer). If the scatterer is a submanifold of codimension more than 1, we say that the billiard is degenerate. We study those trajectories of degenerate billiards that have an infinite number of collisions with the scatterer. Degenerate billiards appear as limits of systems with elastic reflections or as small-mass limits of systems with singularities in celestial mechanics. We prove the existence of trajectories of such systems that shadow the trajectories of the corresponding degenerate billiards. The proofs are based on a version of the method of an anti-integrable limit.



Arnold diffusion in a neighborhood of strong resonances
Abstract
The paper deals with nearly integrable multidimensional a priori unstable Hamiltonian systems. Assuming the Hamilton function is smooth and time-periodic, we study perturbations that are trigonometric polynomials in the “angle” variables in the first approximation. For a generic system in this class, we construct a trajectory whose projection on the space of slow variables crosses a small neighborhood of a strong resonance. We also estimate the speed of this crossing.



Nonequilibrium statistical mechanics of a solid immersed in a continuum
Abstract
In the introductory part of this survey, we briefly discuss the problems of nonequilibrium statistical physics that arise in the study of energy transport in solids as well as the results available at the moment. In the main part of the survey, we explain, compare, and generalize results obtained in our previous works. We study the dynamics and energy transport in Hamiltonian systems of particles where each particle is weakly perturbed by the interaction with its own stochastic Langevin thermostat. Such systems can be regarded as models of solids that interact weakly with a continuum.



A KAM theorem for space-multidimensional Hamiltonian PDEs
Abstract
We present an abstract KAM theorem adapted to space-multidimensional Hamiltonian PDEs with smoothing nonlinearities. The main novelties of this theorem are the following: (i) the integrable part of the Hamiltonian may contain a hyperbolic part and, as a consequence, the constructed invariant tori may be unstable; (ii) it applies to singular perturbation problems. In this paper we state the KAM theorem and comment on it, give the main ingredients of the proof, and present three applications of the theorem.



Spectral stability theory of heteroclinic solutions to the Korteweg-de Vries-Burgers equation with an arbitrary potential
Abstract
The analysis of stability of heteroclinic solutions to the Korteweg–de Vries–Burgers equation is generalized to the case of an arbitrary potential that gives rise to heteroclinic states. An example of a specific nonconvex potential is given for which there exists a wide set of heteroclinic solutions of different types. Stability of the corresponding solutions in the context of uniqueness of a solution to the problem of decay of an arbitrary discontinuity is discussed.



Nonholonomic dynamics and control of a spherical robot with an internal omniwheel platform: Theory and experiments
Abstract
We present the results of theoretical and experimental investigations of the motion of a spherical robot on a plane. The motion is actuated by a platform with omniwheels placed inside the robot. The control of the spherical robot is based on a dynamic model in the nonholonomic statement expressed as equations of motion in quasivelocities with indeterminate coefficients. A number of experiments have been carried out that confirm the adequacy of the dynamic model proposed.



A local perturbation method for the approximate calculation of the acoustic wave diffraction with impedance interface conditions
Abstract
The problem of incidence of an acoustic wave on the interface between media with impedance interface conditions is considered. An approximate method is proposed for calculating the result of diffraction under such conditions. The method is implemented as a computer program, and the result is compared with the analytical solution for the impedance conditions and with the calculations by a program for the contact boundary conditions. Good accuracy of the method and high computation speed are demonstrated, which allow one to apply the proposed approximate method to solving both direct and inverse problems of acoustics.



A self-similar wave problem in a Prandtl-Reuss elastoplastic medium
Abstract
We consider a self-similar piston problem in which stresses on the boundary of a half-space are changed instantaneously. The half-space is filled with a Prandtl–Reuss medium in a uniform stressed state. It is assumed that the formation of shock waves is possible in the medium. We prove the existence of a solution to the problem in the cases when two or all three stress components are changed at the initial moment.



On the stability of periodic trajectories of a planar Birkhoff billiard
Abstract
The inertial motion of a material point is analyzed in a plane domain bounded by two curves that are coaxial segments of an ellipse. The collisions of the point with the boundary curves are assumed to be absolutely elastic. There exists a periodic motion of the point that is described by a two-link trajectory lying on a straight line segment passed twice within the period. This segment is orthogonal to both boundary curves at its endpoints. The nonlinear problem of stability of this trajectory is analyzed. The stability and instability conditions are obtained for almost all values of two dimensionless parameters of the problem.



Asymptotic behavior of the spectrum of one-dimensional vibrations in a layered medium consisting of elastic and Kelvin–Voigt viscoelastic materials
Abstract
The work is devoted to the analysis of the spectral properties of a boundary value problem describing one-dimensional vibrations along the axis Ox1 of periodically alternating M elastic and M viscoelastic layers parallel to the plane Ox2x3. It is shown that the spectrum of the boundary value problem is the union of roots of M equations. The asymptotic behavior of the spectrum of the problem as M → ∞ is analyzed; in particular, it is proved that not all sequences of eigenvalues of the original (prelimit) problem converge to eigenvalues of the corresponding homogenized (limit) problem.



Homogenization of the equations of state for a heterogeneous layered medium consisting of two creep materials
Abstract
A mathematical model that describes the joint motion of periodically alternating layers of two isotropic creep materials is considered. It is assumed that all layers are parallel to one of the coordinate planes and the thickness of any two adjacent layers is ε. For this model, the corresponding homogenized model for ε → 0 is constructed, which describes the behavior of a homogeneous creep material.



On first integrals of geodesic flows on a two-torus
Abstract
For a geodesic (or magnetic geodesic) flow, the problem of the existence of an additional (independent of the energy) first integral that is polynomial in momenta is studied. The relation of this problem to the existence of nontrivial solutions of stationary dispersionless limits of two-dimensional soliton equations is demonstrated. The nonexistence of an additional quadratic first integral is established for certain classes of magnetic geodesic flows.



Abel’s theorem and Bäcklund transformations for the Hamilton-Jacobi equations
Abstract
We consider an algorithm for constructing auto-Bäcklund transformations for finitedimensional Hamiltonian systems whose integration reduces to the inversion of the Abel map. In this case, using equations of motion, one can construct Abel differential equations and identify the sought Bäcklund transformation with the well-known equivalence relation between the roots of the Abel polynomial. As examples, we construct Bäcklund transformations for the Lagrange top, Kowalevski top, and Goryachev–Chaplygin top, which are related to hyperelliptic curves of genera 1 and 2, as well as for the Goryachev and Dullin–Matveev systems, which are related to trigonal curves in the plane.



On the application of the asymptotic method of global instability in aeroelasticity problems
Abstract
The asymptotic method of global instability developed by A.G. Kulikovskii is an effective tool for determining the eigenfrequencies and stability boundary of one-dimensional or multidimensional systems of sufficiently large finite length. The effectiveness of the method was demonstrated on a number of one-dimensional problems; and since the mid-2000s, this method has been used in aeroelasticity problems, which are not strictly one-dimensional: such is only the elastic part of the problem, while the gas flow occupies an unbounded domain. In the present study, the eigenfrequencies and stability boundaries predicted by the method of global instability are compared with the results of direct calculation of the spectra of the corresponding problems. The size of systems is determined starting from which the method makes a quantitatively correct prediction for the stability boundary.



Controlled motion of a rigid body with internal mechanisms in an ideal incompressible fluid
Abstract
We consider the controlled motion in an ideal incompressible fluid of a rigid body with moving internal masses and an internal rotor in the presence of circulation of the fluid velocity around the body. The controllability of motion (according to the Rashevskii–Chow theorem) is proved for various combinations of control elements. In the case of zero circulation, we construct explicit controls (gaits) that ensure rotation and rectilinear (on average) motion. In the case of nonzero circulation, we examine the problem of stabilizing the body (compensating the drift) at the end point of the trajectory. We show that the drift can be compensated for if the body is inside a circular domain whose size is defined by the geometry of the body and the value of circulation.


