On first integrals of geodesic flows on a two-torus


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

For a geodesic (or magnetic geodesic) flow, the problem of the existence of an additional (independent of the energy) first integral that is polynomial in momenta is studied. The relation of this problem to the existence of nontrivial solutions of stationary dispersionless limits of two-dimensional soliton equations is demonstrated. The nonexistence of an additional quadratic first integral is established for certain classes of magnetic geodesic flows.

Sobre autores

I. Taimanov

Sobolev Institute of Mathematics; Faculty of Mechanics and Mathematics

Autor responsável pela correspondência
Email: taimanov@math.nsc.ru
Rússia, pr. Akademika Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2016