Asymptotic behavior of the spectrum of one-dimensional vibrations in a layered medium consisting of elastic and Kelvin–Voigt viscoelastic materials


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The work is devoted to the analysis of the spectral properties of a boundary value problem describing one-dimensional vibrations along the axis Ox1 of periodically alternating M elastic and M viscoelastic layers parallel to the plane Ox2x3. It is shown that the spectrum of the boundary value problem is the union of roots of M equations. The asymptotic behavior of the spectrum of the problem as M → ∞ is analyzed; in particular, it is proved that not all sequences of eigenvalues of the original (prelimit) problem converge to eigenvalues of the corresponding homogenized (limit) problem.

作者简介

A. Shamaev

Steklov Mathematical Institute of Russian Academy of Sciences

编辑信件的主要联系方式.
Email: sham@rambler.ru
俄罗斯联邦, ul. Gubkina 8, Moscow, 119991

V. Shumilova

Steklov Mathematical Institute of Russian Academy of Sciences

Email: sham@rambler.ru
俄罗斯联邦, ul. Gubkina 8, Moscow, 119991

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016