Asymptotic behavior of the spectrum of one-dimensional vibrations in a layered medium consisting of elastic and Kelvin–Voigt viscoelastic materials
- Авторы: Shamaev A.S.1, Shumilova V.V.1
-
Учреждения:
- Steklov Mathematical Institute of Russian Academy of Sciences
- Выпуск: Том 295, № 1 (2016)
- Страницы: 202-212
- Раздел: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/174165
- DOI: https://doi.org/10.1134/S0081543816080137
- ID: 174165
Цитировать
Аннотация
The work is devoted to the analysis of the spectral properties of a boundary value problem describing one-dimensional vibrations along the axis Ox1 of periodically alternating M elastic and M viscoelastic layers parallel to the plane Ox2x3. It is shown that the spectrum of the boundary value problem is the union of roots of M equations. The asymptotic behavior of the spectrum of the problem as M → ∞ is analyzed; in particular, it is proved that not all sequences of eigenvalues of the original (prelimit) problem converge to eigenvalues of the corresponding homogenized (limit) problem.
Об авторах
A. Shamaev
Steklov Mathematical Institute of Russian Academy of Sciences
Автор, ответственный за переписку.
Email: sham@rambler.ru
Россия, ul. Gubkina 8, Moscow, 119991
V. Shumilova
Steklov Mathematical Institute of Russian Academy of Sciences
Email: sham@rambler.ru
Россия, ul. Gubkina 8, Moscow, 119991
Дополнительные файлы
