Uniqueness theorem for locally antipodal Delaunay sets
- Авторлар: Dolbilin N.P.1, Magazinov A.N.1
-
Мекемелер:
- Steklov Mathematical Institute of Russian Academy of Sciences
- Шығарылым: Том 294, № 1 (2016)
- Беттер: 215-221
- Бөлім: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/173960
- DOI: https://doi.org/10.1134/S0081543816060134
- ID: 173960
Дәйексөз келтіру
Аннотация
We prove theorems on locally antipodal Delaunay sets. The main result is the proof of a uniqueness theorem for locally antipodal Delaunay sets with a given 2R-cluster. This theorem implies, in particular, a new proof of a theorem stating that a locally antipodal Delaunay set all of whose 2R-clusters are equivalent is a regular system, i.e., a Delaunay set on which a crystallographic group acts transitively.
Авторлар туралы
N. Dolbilin
Steklov Mathematical Institute of Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: dolbilin@mi.ras.ru
Ресей, ul. Gubkina 8, Moscow, 119991
A. Magazinov
Steklov Mathematical Institute of Russian Academy of Sciences
Email: dolbilin@mi.ras.ru
Ресей, ul. Gubkina 8, Moscow, 119991
Қосымша файлдар
