Uniqueness theorem for locally antipodal Delaunay sets


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We prove theorems on locally antipodal Delaunay sets. The main result is the proof of a uniqueness theorem for locally antipodal Delaunay sets with a given 2R-cluster. This theorem implies, in particular, a new proof of a theorem stating that a locally antipodal Delaunay set all of whose 2R-clusters are equivalent is a regular system, i.e., a Delaunay set on which a crystallographic group acts transitively.

作者简介

N. Dolbilin

Steklov Mathematical Institute of Russian Academy of Sciences

编辑信件的主要联系方式.
Email: dolbilin@mi.ras.ru
俄罗斯联邦, ul. Gubkina 8, Moscow, 119991

A. Magazinov

Steklov Mathematical Institute of Russian Academy of Sciences

Email: dolbilin@mi.ras.ru
俄罗斯联邦, ul. Gubkina 8, Moscow, 119991

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016