On the size of the genus of a division algebra


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Let D be a central division algebra of degree n over a field K. One defines the genus gen(D) as the set of classes [D′] ∈ Br(K) in the Brauer group of K represented by central division algebras D′ of degree n over K having the same maximal subfields as D. We prove that if the field K is finitely generated and n is prime to its characteristic, then gen(D) is finite, and give explicit estimations of its size in certain situations.

作者简介

Vladimir Chernousov

Department of Mathematical and Statistical Sciences

编辑信件的主要联系方式.
Email: vladimir@ualberta.ca
加拿大, Edmonton, Alberta, T6G 2G1

Andrei Rapinchuk

Department of Mathematics

Email: vladimir@ualberta.ca
美国, Charlottesville, VA, 22904-4137

Igor Rapinchuk

Department of Mathematics

Email: vladimir@ualberta.ca
美国, Cambridge, MA, 02138

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016