On the size of the genus of a division algebra
- Авторы: Chernousov V.I.1, Rapinchuk A.S.2, Rapinchuk I.A.2
-
Учреждения:
- Department of Mathematical and Statistical Sciences
- Department of Mathematics
- Выпуск: Том 292, № 1 (2016)
- Страницы: 63-93
- Раздел: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/173439
- DOI: https://doi.org/10.1134/S0081543816010053
- ID: 173439
Цитировать
Аннотация
Let D be a central division algebra of degree n over a field K. One defines the genus gen(D) as the set of classes [D′] ∈ Br(K) in the Brauer group of K represented by central division algebras D′ of degree n over K having the same maximal subfields as D. We prove that if the field K is finitely generated and n is prime to its characteristic, then gen(D) is finite, and give explicit estimations of its size in certain situations.
Ключевые слова
Об авторах
Vladimir Chernousov
Department of Mathematical and Statistical Sciences
Автор, ответственный за переписку.
Email: vladimir@ualberta.ca
Канада, Edmonton, Alberta, T6G 2G1
Andrei Rapinchuk
Department of Mathematics
Email: vladimir@ualberta.ca
США, Charlottesville, VA, 22904-4137
Igor Rapinchuk
Department of Mathematics
Email: vladimir@ualberta.ca
США, Cambridge, MA, 02138
Дополнительные файлы
