On the size of the genus of a division algebra
- Авторлар: Chernousov V.I.1, Rapinchuk A.S.2, Rapinchuk I.A.2
-
Мекемелер:
- Department of Mathematical and Statistical Sciences
- Department of Mathematics
- Шығарылым: Том 292, № 1 (2016)
- Беттер: 63-93
- Бөлім: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/173439
- DOI: https://doi.org/10.1134/S0081543816010053
- ID: 173439
Дәйексөз келтіру
Аннотация
Let D be a central division algebra of degree n over a field K. One defines the genus gen(D) as the set of classes [D′] ∈ Br(K) in the Brauer group of K represented by central division algebras D′ of degree n over K having the same maximal subfields as D. We prove that if the field K is finitely generated and n is prime to its characteristic, then gen(D) is finite, and give explicit estimations of its size in certain situations.
Негізгі сөздер
Авторлар туралы
Vladimir Chernousov
Department of Mathematical and Statistical Sciences
Хат алмасуға жауапты Автор.
Email: vladimir@ualberta.ca
Канада, Edmonton, Alberta, T6G 2G1
Andrei Rapinchuk
Department of Mathematics
Email: vladimir@ualberta.ca
АҚШ, Charlottesville, VA, 22904-4137
Igor Rapinchuk
Department of Mathematics
Email: vladimir@ualberta.ca
АҚШ, Cambridge, MA, 02138
Қосымша файлдар
