Approximation in L2 by Partial Integrals of the Multidimensional Fourier Transform over the Eigenfunctions of the Sturm–Liouville Operator


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

For approximations in the space L2(ℝ+d) by partial integrals of the multidimensional Fourier transform over the eigenfunctions of the Sturm–Liouville operator, we prove the Jackson inequality with sharp constant and optimal argument in the modulus of continuity. The multidimensional weight that defines the Sturm–Liouville operator is the product of onedimensional weights. The one-dimensional weights can be, in particular, power and hyperbolic weights with various parameters. The optimality of the argument in the modulus of continuity is established by means of the multidimensional Gauss quadrature formula over zeros of an eigenfunction of the Sturm–Liouville operator. The obtained results are complete; they generalize a number of known results.

Sobre autores

D. Gorbachev

Tula State University

Autor responsável pela correspondência
Email: dvgmail@mail.ru
Rússia, Tula, 300600

V. Ivanov

Tula State University

Email: dvgmail@mail.ru
Rússia, Tula, 300600

R. Veprintsev

Tula State University

Email: dvgmail@mail.ru
Rússia, Tula, 300600

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018