Approximation in L2 by Partial Integrals of the Multidimensional Fourier Transform over the Eigenfunctions of the Sturm–Liouville Operator


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

For approximations in the space L2(ℝ+d) by partial integrals of the multidimensional Fourier transform over the eigenfunctions of the Sturm–Liouville operator, we prove the Jackson inequality with sharp constant and optimal argument in the modulus of continuity. The multidimensional weight that defines the Sturm–Liouville operator is the product of onedimensional weights. The one-dimensional weights can be, in particular, power and hyperbolic weights with various parameters. The optimality of the argument in the modulus of continuity is established by means of the multidimensional Gauss quadrature formula over zeros of an eigenfunction of the Sturm–Liouville operator. The obtained results are complete; they generalize a number of known results.

作者简介

D. Gorbachev

Tula State University

编辑信件的主要联系方式.
Email: dvgmail@mail.ru
俄罗斯联邦, Tula, 300600

V. Ivanov

Tula State University

Email: dvgmail@mail.ru
俄罗斯联邦, Tula, 300600

R. Veprintsev

Tula State University

Email: dvgmail@mail.ru
俄罗斯联邦, Tula, 300600

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018