Approximation in L2 by Partial Integrals of the Multidimensional Fourier Transform over the Eigenfunctions of the Sturm–Liouville Operator
- 作者: Gorbachev D.V.1, Ivanov V.I.1, Veprintsev R.A.1
-
隶属关系:
- Tula State University
- 期: 卷 300, 编号 Suppl 1 (2018)
- 页面: 97-113
- 栏目: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/175480
- DOI: https://doi.org/10.1134/S0081543818020104
- ID: 175480
如何引用文章
详细
For approximations in the space L2(ℝ+d) by partial integrals of the multidimensional Fourier transform over the eigenfunctions of the Sturm–Liouville operator, we prove the Jackson inequality with sharp constant and optimal argument in the modulus of continuity. The multidimensional weight that defines the Sturm–Liouville operator is the product of onedimensional weights. The one-dimensional weights can be, in particular, power and hyperbolic weights with various parameters. The optimality of the argument in the modulus of continuity is established by means of the multidimensional Gauss quadrature formula over zeros of an eigenfunction of the Sturm–Liouville operator. The obtained results are complete; they generalize a number of known results.
作者简介
D. Gorbachev
Tula State University
编辑信件的主要联系方式.
Email: dvgmail@mail.ru
俄罗斯联邦, Tula, 300600
V. Ivanov
Tula State University
Email: dvgmail@mail.ru
俄罗斯联邦, Tula, 300600
R. Veprintsev
Tula State University
Email: dvgmail@mail.ru
俄罗斯联邦, Tula, 300600
补充文件
