Approximation in L2 by Partial Integrals of the Multidimensional Fourier Transform over the Eigenfunctions of the Sturm–Liouville Operator


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

For approximations in the space L2(ℝ+d) by partial integrals of the multidimensional Fourier transform over the eigenfunctions of the Sturm–Liouville operator, we prove the Jackson inequality with sharp constant and optimal argument in the modulus of continuity. The multidimensional weight that defines the Sturm–Liouville operator is the product of onedimensional weights. The one-dimensional weights can be, in particular, power and hyperbolic weights with various parameters. The optimality of the argument in the modulus of continuity is established by means of the multidimensional Gauss quadrature formula over zeros of an eigenfunction of the Sturm–Liouville operator. The obtained results are complete; they generalize a number of known results.

Авторлар туралы

D. Gorbachev

Tula State University

Хат алмасуға жауапты Автор.
Email: dvgmail@mail.ru
Ресей, Tula, 300600

V. Ivanov

Tula State University

Email: dvgmail@mail.ru
Ресей, Tula, 300600

R. Veprintsev

Tula State University

Email: dvgmail@mail.ru
Ресей, Tula, 300600

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2018