Asymptotic behavior of the spectrum of one-dimensional vibrations in a layered medium consisting of elastic and Kelvin–Voigt viscoelastic materials


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The work is devoted to the analysis of the spectral properties of a boundary value problem describing one-dimensional vibrations along the axis Ox1 of periodically alternating M elastic and M viscoelastic layers parallel to the plane Ox2x3. It is shown that the spectrum of the boundary value problem is the union of roots of M equations. The asymptotic behavior of the spectrum of the problem as M → ∞ is analyzed; in particular, it is proved that not all sequences of eigenvalues of the original (prelimit) problem converge to eigenvalues of the corresponding homogenized (limit) problem.

Sobre autores

A. Shamaev

Steklov Mathematical Institute of Russian Academy of Sciences

Autor responsável pela correspondência
Email: sham@rambler.ru
Rússia, ul. Gubkina 8, Moscow, 119991

V. Shumilova

Steklov Mathematical Institute of Russian Academy of Sciences

Email: sham@rambler.ru
Rússia, ul. Gubkina 8, Moscow, 119991

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2016