Compactifications of \({{\cal M}_{0,n}}\) Associated with Alexander Self-Dual Complexes: Chow Rings, ψ-Classes, and Intersection Numbers


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

An Alexander self-dual complex gives rise to a compactification of \({{\cal M}_{0,n}}\), called an ASD compactification, which is a smooth algebraic variety. ASD compactifications include (but are not exhausted by) the polygon spaces, or the configuration spaces of flexible polygons. We present an explicit description of the Chow rings of ASD compactifications. We study the analogs of Kontsevich’s tautological bundles, compute their Chern classes, compute top intersections of the Chern classes, and derive a recursion for the intersection numbers.

Sobre autores

Ilia Nekrasov

Chebyshev Laboratory

Autor responsável pela correspondência
Email: geometr.nekrasov@yandex.ru
Rússia, 14 liniya Vasil’evskogo ostrova 29B, St. Petersburg, 199178

Gaiane Panina

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences; Faculty of Mathematics and Mechanics

Autor responsável pela correspondência
Email: gaiane-panina@rambler.ru
Rússia, nab. Fontanki 27, St. Petersburg; Universitetskii pr. 28, Peterhof, St. Petersburg, 198504

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2019