Compactifications of \({{\cal M}_{0,n}}\) Associated with Alexander Self-Dual Complexes: Chow Rings, ψ-Classes, and Intersection Numbers
- Авторы: Nekrasov I.I.1, Panina G.Y.2,3
-
Учреждения:
- Chebyshev Laboratory
- St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
- Faculty of Mathematics and Mechanics
- Выпуск: Том 305, № 1 (2019)
- Страницы: 232-250
- Раздел: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/175818
- DOI: https://doi.org/10.1134/S0081543819030131
- ID: 175818
Цитировать
Аннотация
An Alexander self-dual complex gives rise to a compactification of \({{\cal M}_{0,n}}\), called an ASD compactification, which is a smooth algebraic variety. ASD compactifications include (but are not exhausted by) the polygon spaces, or the configuration spaces of flexible polygons. We present an explicit description of the Chow rings of ASD compactifications. We study the analogs of Kontsevich’s tautological bundles, compute their Chern classes, compute top intersections of the Chern classes, and derive a recursion for the intersection numbers.
Об авторах
Ilia Nekrasov
Chebyshev Laboratory
Автор, ответственный за переписку.
Email: geometr.nekrasov@yandex.ru
Россия, 14 liniya Vasil’evskogo ostrova 29B, St. Petersburg, 199178
Gaiane Panina
St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences; Faculty of Mathematics and Mechanics
Автор, ответственный за переписку.
Email: gaiane-panina@rambler.ru
Россия, nab. Fontanki 27, St. Petersburg; Universitetskii pr. 28, Peterhof, St. Petersburg, 198504
Дополнительные файлы
