Compactifications of \({{\cal M}_{0,n}}\) Associated with Alexander Self-Dual Complexes: Chow Rings, ψ-Classes, and Intersection Numbers


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

An Alexander self-dual complex gives rise to a compactification of \({{\cal M}_{0,n}}\), called an ASD compactification, which is a smooth algebraic variety. ASD compactifications include (but are not exhausted by) the polygon spaces, or the configuration spaces of flexible polygons. We present an explicit description of the Chow rings of ASD compactifications. We study the analogs of Kontsevich’s tautological bundles, compute their Chern classes, compute top intersections of the Chern classes, and derive a recursion for the intersection numbers.

作者简介

Ilia Nekrasov

Chebyshev Laboratory

编辑信件的主要联系方式.
Email: geometr.nekrasov@yandex.ru
俄罗斯联邦, 14 liniya Vasil’evskogo ostrova 29B, St. Petersburg, 199178

Gaiane Panina

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences; Faculty of Mathematics and Mechanics

编辑信件的主要联系方式.
Email: gaiane-panina@rambler.ru
俄罗斯联邦, nab. Fontanki 27, St. Petersburg; Universitetskii pr. 28, Peterhof, St. Petersburg, 198504

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019