On uniform Lebesgue constants of local exponential splines with equidistant knots
- 作者: Strelkova E.V.1, Shevaldin V.T.1
-
隶属关系:
- Krasovskii Institute of Mathematics and Mechanics
- 期: 卷 296, 编号 Suppl 1 (2017)
- 页面: 206-217
- 栏目: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/174423
- DOI: https://doi.org/10.1134/S0081543817020195
- ID: 174423
如何引用文章
详细
For a linear differential operator Lr of arbitrary order r with constant coefficients and real pairwise different roots of the characteristic polynomial, we study Lebesgue constants (the norms of linear operators from C to C) of local exponential splines corresponding to this operator with a uniform arrangement of knots; such splines were constructed by the authors in earlier papers. In particular, for the third-order operator L3 = D(D2 − β2) (β > 0), we find the exact values of Lebesgue constants for two types of local splines and compare these values with Lebesgue constants of exponential interpolation splines.
作者简介
E. Strelkova
Krasovskii Institute of Mathematics and Mechanics
Email: Valerii.Shevaldin@imm.uran.ru
俄罗斯联邦, Yekaterinburg, 620990
V. Shevaldin
Krasovskii Institute of Mathematics and Mechanics
编辑信件的主要联系方式.
Email: Valerii.Shevaldin@imm.uran.ru
俄罗斯联邦, Yekaterinburg, 620990
补充文件
