On uniform Lebesgue constants of local exponential splines with equidistant knots


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

For a linear differential operator Lr of arbitrary order r with constant coefficients and real pairwise different roots of the characteristic polynomial, we study Lebesgue constants (the norms of linear operators from C to C) of local exponential splines corresponding to this operator with a uniform arrangement of knots; such splines were constructed by the authors in earlier papers. In particular, for the third-order operator L3 = D(D2β2) (β > 0), we find the exact values of Lebesgue constants for two types of local splines and compare these values with Lebesgue constants of exponential interpolation splines.

作者简介

E. Strelkova

Krasovskii Institute of Mathematics and Mechanics

Email: Valerii.Shevaldin@imm.uran.ru
俄罗斯联邦, Yekaterinburg, 620990

V. Shevaldin

Krasovskii Institute of Mathematics and Mechanics

编辑信件的主要联系方式.
Email: Valerii.Shevaldin@imm.uran.ru
俄罗斯联邦, Yekaterinburg, 620990

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017