On uniform Lebesgue constants of local exponential splines with equidistant knots


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

For a linear differential operator Lr of arbitrary order r with constant coefficients and real pairwise different roots of the characteristic polynomial, we study Lebesgue constants (the norms of linear operators from C to C) of local exponential splines corresponding to this operator with a uniform arrangement of knots; such splines were constructed by the authors in earlier papers. In particular, for the third-order operator L3 = D(D2β2) (β > 0), we find the exact values of Lebesgue constants for two types of local splines and compare these values with Lebesgue constants of exponential interpolation splines.

Авторлар туралы

E. Strelkova

Krasovskii Institute of Mathematics and Mechanics

Email: Valerii.Shevaldin@imm.uran.ru
Ресей, Yekaterinburg, 620990

V. Shevaldin

Krasovskii Institute of Mathematics and Mechanics

Хат алмасуға жауапты Автор.
Email: Valerii.Shevaldin@imm.uran.ru
Ресей, Yekaterinburg, 620990

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2017