On uniform Lebesgue constants of local exponential splines with equidistant knots


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

For a linear differential operator Lr of arbitrary order r with constant coefficients and real pairwise different roots of the characteristic polynomial, we study Lebesgue constants (the norms of linear operators from C to C) of local exponential splines corresponding to this operator with a uniform arrangement of knots; such splines were constructed by the authors in earlier papers. In particular, for the third-order operator L3 = D(D2β2) (β > 0), we find the exact values of Lebesgue constants for two types of local splines and compare these values with Lebesgue constants of exponential interpolation splines.

Sobre autores

E. Strelkova

Krasovskii Institute of Mathematics and Mechanics

Email: Valerii.Shevaldin@imm.uran.ru
Rússia, Yekaterinburg, 620990

V. Shevaldin

Krasovskii Institute of Mathematics and Mechanics

Autor responsável pela correspondência
Email: Valerii.Shevaldin@imm.uran.ru
Rússia, Yekaterinburg, 620990

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2017