Short cubic exponential sums over primes
- Авторлар: Rakhmonov Z.K.1, Rakhmonov F.Z.1
-
Мекемелер:
- A. Juraev Institute of Mathematics
- Шығарылым: Том 296, № 1 (2017)
- Беттер: 211-233
- Бөлім: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/174258
- DOI: https://doi.org/10.1134/S0081543817010175
- ID: 174258
Дәйексөз келтіру
Аннотация
For y ≥ x4/5L8B+151 (where L = log(xq) and B is an absolute constant), a nontrivial estimate is obtained for short cubic exponential sums over primes of the form S3(α; x, y) = ∑x−y<n≤x Λ(n)e(αn3), where α = a/q + θ/q2, (a, q) = 1, L32(B+20) < q ≤ y5x−2L−32(B+20), |θ| ≤ 1, Λ is the von Mangoldt function, and e(t) = e2πit.
Авторлар туралы
Z. Rakhmonov
A. Juraev Institute of Mathematics
Хат алмасуға жауапты Автор.
Email: zarullo-r@rambler.ru
Тәжікстан, Aini st. 299/1, Dushanbe, 734063
F. Rakhmonov
A. Juraev Institute of Mathematics
Email: zarullo-r@rambler.ru
Тәжікстан, Aini st. 299/1, Dushanbe, 734063
Қосымша файлдар
