Short cubic exponential sums over primes
- Authors: Rakhmonov Z.K.1, Rakhmonov F.Z.1
-
Affiliations:
- A. Juraev Institute of Mathematics
- Issue: Vol 296, No 1 (2017)
- Pages: 211-233
- Section: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/174258
- DOI: https://doi.org/10.1134/S0081543817010175
- ID: 174258
Cite item
Abstract
For y ≥ x4/5L8B+151 (where L = log(xq) and B is an absolute constant), a nontrivial estimate is obtained for short cubic exponential sums over primes of the form S3(α; x, y) = ∑x−y<n≤x Λ(n)e(αn3), where α = a/q + θ/q2, (a, q) = 1, L32(B+20) < q ≤ y5x−2L−32(B+20), |θ| ≤ 1, Λ is the von Mangoldt function, and e(t) = e2πit.
About the authors
Z. Kh. Rakhmonov
A. Juraev Institute of Mathematics
Author for correspondence.
Email: zarullo-r@rambler.ru
Tajikistan, Aini st. 299/1, Dushanbe, 734063
F. Z. Rakhmonov
A. Juraev Institute of Mathematics
Email: zarullo-r@rambler.ru
Tajikistan, Aini st. 299/1, Dushanbe, 734063
Supplementary files
