Spectral stability theory of heteroclinic solutions to the Korteweg-de Vries-Burgers equation with an arbitrary potential
- Авторлар: Il’ichev A.T.1, Chugainova A.P.1
-
Мекемелер:
- Steklov Mathematical Institute of Russian Academy of Sciences
- Шығарылым: Том 295, № 1 (2016)
- Беттер: 148-157
- Бөлім: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/174141
- DOI: https://doi.org/10.1134/S0081543816080083
- ID: 174141
Дәйексөз келтіру
Аннотация
The analysis of stability of heteroclinic solutions to the Korteweg–de Vries–Burgers equation is generalized to the case of an arbitrary potential that gives rise to heteroclinic states. An example of a specific nonconvex potential is given for which there exists a wide set of heteroclinic solutions of different types. Stability of the corresponding solutions in the context of uniqueness of a solution to the problem of decay of an arbitrary discontinuity is discussed.
Авторлар туралы
A. Il’ichev
Steklov Mathematical Institute of Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: ilichev@mi.ras.ru
Ресей, ul. Gubkina 8, Moscow, 119991
A. Chugainova
Steklov Mathematical Institute of Russian Academy of Sciences
Email: ilichev@mi.ras.ru
Ресей, ul. Gubkina 8, Moscow, 119991
Қосымша файлдар
