Spectral stability theory of heteroclinic solutions to the Korteweg-de Vries-Burgers equation with an arbitrary potential
- 作者: Il’ichev A.T.1, Chugainova A.P.1
-
隶属关系:
- Steklov Mathematical Institute of Russian Academy of Sciences
- 期: 卷 295, 编号 1 (2016)
- 页面: 148-157
- 栏目: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/174141
- DOI: https://doi.org/10.1134/S0081543816080083
- ID: 174141
如何引用文章
详细
The analysis of stability of heteroclinic solutions to the Korteweg–de Vries–Burgers equation is generalized to the case of an arbitrary potential that gives rise to heteroclinic states. An example of a specific nonconvex potential is given for which there exists a wide set of heteroclinic solutions of different types. Stability of the corresponding solutions in the context of uniqueness of a solution to the problem of decay of an arbitrary discontinuity is discussed.
作者简介
A. Il’ichev
Steklov Mathematical Institute of Russian Academy of Sciences
编辑信件的主要联系方式.
Email: ilichev@mi.ras.ru
俄罗斯联邦, ul. Gubkina 8, Moscow, 119991
A. Chugainova
Steklov Mathematical Institute of Russian Academy of Sciences
Email: ilichev@mi.ras.ru
俄罗斯联邦, ul. Gubkina 8, Moscow, 119991
补充文件
