Construction of an optimal envelope for a cone of nonnegative functions with monotonicity properties
- 作者: Bakhtigareeva E.G.1, Goldman M.L.1
-
隶属关系:
- Steklov Mathematical Institute of Russian Academy of Sciences
- 期: 卷 293, 编号 1 (2016)
- 页面: 37-55
- 栏目: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/173675
- DOI: https://doi.org/10.1134/S0081543816040039
- ID: 173675
如何引用文章
详细
We study the problem of constructing a minimal quasi-Banach ideal space containing a given cone of nonnegative functions with monotonicity properties. The construction employs nondegenerate operators. We present general results on constructing optimal envelopes consistent with an order relation and obtain specifications of these constructions for various cones and various order relations. We also address the issue of order covering and order equivalence of cones.
作者简介
E. Bakhtigareeva
Steklov Mathematical Institute of Russian Academy of Sciences
编辑信件的主要联系方式.
Email: salykai@yandex.ru
俄罗斯联邦, ul. Gubkina 8, Moscow, 119991
M. Goldman
Steklov Mathematical Institute of Russian Academy of Sciences
Email: salykai@yandex.ru
俄罗斯联邦, ul. Gubkina 8, Moscow, 119991
补充文件
