Construction of an optimal envelope for a cone of nonnegative functions with monotonicity properties
- Авторлар: Bakhtigareeva E.G.1, Goldman M.L.1
-
Мекемелер:
- Steklov Mathematical Institute of Russian Academy of Sciences
- Шығарылым: Том 293, № 1 (2016)
- Беттер: 37-55
- Бөлім: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/173675
- DOI: https://doi.org/10.1134/S0081543816040039
- ID: 173675
Дәйексөз келтіру
Аннотация
We study the problem of constructing a minimal quasi-Banach ideal space containing a given cone of nonnegative functions with monotonicity properties. The construction employs nondegenerate operators. We present general results on constructing optimal envelopes consistent with an order relation and obtain specifications of these constructions for various cones and various order relations. We also address the issue of order covering and order equivalence of cones.
Авторлар туралы
E. Bakhtigareeva
Steklov Mathematical Institute of Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: salykai@yandex.ru
Ресей, ul. Gubkina 8, Moscow, 119991
M. Goldman
Steklov Mathematical Institute of Russian Academy of Sciences
Email: salykai@yandex.ru
Ресей, ul. Gubkina 8, Moscow, 119991
Қосымша файлдар
