Construction of an optimal envelope for a cone of nonnegative functions with monotonicity properties
- Autores: Bakhtigareeva E.G.1, Goldman M.L.1
-
Afiliações:
- Steklov Mathematical Institute of Russian Academy of Sciences
- Edição: Volume 293, Nº 1 (2016)
- Páginas: 37-55
- Seção: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/173675
- DOI: https://doi.org/10.1134/S0081543816040039
- ID: 173675
Citar
Resumo
We study the problem of constructing a minimal quasi-Banach ideal space containing a given cone of nonnegative functions with monotonicity properties. The construction employs nondegenerate operators. We present general results on constructing optimal envelopes consistent with an order relation and obtain specifications of these constructions for various cones and various order relations. We also address the issue of order covering and order equivalence of cones.
Sobre autores
E. Bakhtigareeva
Steklov Mathematical Institute of Russian Academy of Sciences
Autor responsável pela correspondência
Email: salykai@yandex.ru
Rússia, ul. Gubkina 8, Moscow, 119991
M. Goldman
Steklov Mathematical Institute of Russian Academy of Sciences
Email: salykai@yandex.ru
Rússia, ul. Gubkina 8, Moscow, 119991
Arquivos suplementares
