Boundary and Contact Conditions of Higher Order of Accuracy for Grid-Characteristic Schemes in Acoustic Problems

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Seismic wave propagation through geological media is described by linear hyperbolic systems of equations. They correspond to acoustic, isotropic, and anisotropic linear elastic porous fluid-saturated models. They can be solved numerically by applying grid-characteristic schemes, which take into account propagation of solution discontinuities along characteristics. An important property of schemes used in practice is their high order of accuracy, due to which signal wavefronts can be clearly resolved. Previously, much attention was given to this property at interior points of the computational domain. In this paper, we study the order of a scheme up to the boundary of the domain inclusive. An approach is proposed whereby arbitrary linear boundary and contact conditions can be set up to high accuracy. The presentation is given for the system of one-dimensional acoustic equations with constant coefficients.

About the authors

A. V. Shevchenko

Moscow Institute of Physics and Technology (National Research University); Institute of Computer Aided Design, Russian Academy of Sciences

Email: w.golubev@mail.ru
141701, Dolgoprudnyi, Moscow oblast, Russia; 123056, Moscow, Russia

V. I. Golubev

Moscow Institute of Physics and Technology (National Research University); Institute of Computer Aided Design, Russian Academy of Sciences

Author for correspondence.
Email: w.golubev@mail.ru
Russian Federation, Moscow Region, Dolgoprudny; Russian Federation, Moscow

References

  1. Zhou H., Liu Y., Wang J. Elastic Wave Modeling With High-Order Temporal and Spatial Accuracies by a Selectively Modified and Linearly Optimized Staggered-Grid Finite-Difference Scheme // IEEE Transactions on Geoscience and Remote Sensing. 2022. V. 60. P. 1–22.
  2. Reinarz A., Charrier D.E., Bader M., Bovard L., Dumbser M., Duru K., Fambri F., Gabriel A.-A., Gallard J.-M., Koppel S., Krenz L., Rannabauer L., Rezzolla L., Samfass P., Tavelli M., Weinzierl T. ExaHyPE: An engine for parallel dynamically adaptive simulations of wave problems // Computer Physics Communications. 2020. V. 254.
  3. Магомедов К.М., Холодов А.С. Сеточно-характеристические численные методы: учебное пособие для вузов. М: Юрайт, 2023.
  4. Yang H.Q., Harris R.E. Development of Vertex-Centered High-Order Schemes and Implementation in FUN3D // AIAA Journal. 2016. V. 54. I. 12. P. 1–19.
  5. Van Leer B., Nishikawa H. Towards the ultimate understanding of MUSCL: Pitfalls in achieving third-order accuracy // J. Comput. Phys. 2021. V. 446. P. 110640.
  6. Nishikawa H. On False Accuracy Verification of UMUSCL Scheme // Communications in Comput. Physics. 2021. V. 30. I. 4. P. 1037–1060.
  7. Padway E., Nishikawa H. Resolving Confusions over Third-Order Accuracy of Unstructured MUSCL // AIAA Journal. 2022. V. 60. I. 3. P. 1415–1439.
  8. Nishikawa H. Economically high-order unstructured-grid methods: Clarification and efficient FSR schemes // Intern. Journal for Numerical Methods in Fluids. 2021. V. 93. I. 11. P. 3187–3214.
  9. Nishikawa H., Van Leer B. Towards High-Order Boundary Procedures for Finite-Volume and Finite-Difference Schemes // AIAA SCITECH 2023 Forum.
  10. Ладонкина М.Е., Неклюдова О.А., Тишкин В.Ф. Исследование влияния лимитера на порядок точности решения разрывным методом Галеркина // Матем. моделирование. 2012. Т. 24. № 12. С. 124–128.
  11. Guseva E.K., Golubev V.I., Petrov I.B. Linear, Quasi-Monotonic and Hybrid Grid-Characteristic Schemes for Hyperbolic Equations // Lobachevskii Journal of Mathematics. 2023. V. 44. I. 1. P. 296–312.
  12. Golubev V.I., Muratov M.V., Guseva E.K., Konov D.S., Petrov I.B. Thermodynamic and Mechanical Problems of Ice Formations: Numerical Simulation Results // Lobachevskii Journal of Mathematics. 2022. V. 43 I. 4.
  13. Guseva E.K., Beklemysheva K.A., Golubev V.I., Epifanov V.P., Petrov I.B. Investigation of Ice Rheology Based on Computer Simulation of Low-Speed Impact // Mathematical Modeling and Supercomputer Technologies. 2022. P. 176-184.
  14. Petrov I.B., Golubev V.I., Shevchenko A.V. Higher-Order Grid-Characteristic Schemes for the Acoustic System // 2021 Ivannikov Memorial Workshop (IVMEM). 2021. P. 61–65.
  15. Golubev V.I., Shevchenko A.V., Petrov I.B. Raising convergence order of grid-characteristic schemes for 2D linear elasticity problems using operator splitting // Computer Research and Modeling. 2022. V. 14. I. 4. P. 899–910.
  16. Golubev V.I., Shevchenko A.V., Khokhlov N.I., Petrov I.B., Malovichko M.S. Compact Grid-Characteristic Scheme for the Acoustic System with the Piece-Wise Constant Coefficients // International Journal of Applied Mechanics. 2022. V. 14. I. 2. P. 2250002.
  17. Petrov I.B., Kholodov A.S. Numerical study of some dynamic problems of the mechanics of a deformable rigid body by the mesh-characteristic method // Computational Mathematics and Mathematical Physics. 1984. V. 24. I. 3. P. 61–73.
  18. Петров И.Б., Тормасов А.Г., Холодов А.С. Об использовании гибридизированных сеточно-характеристических схем для численного решения трехмерных задач динамики деформируемого твердого тела // Ж. вычисл. матем. и матем. физ. 1990. Т. 30. № 8. С. 1237–1244.
  19. Favorskaya A.V., Zhdanov M.S., Khokhlov N.I., Petrov I.B. Modelling the wave phenomena in acoustic and elastic media with sharp variations of physical properties using the grid-characteristic method // Geophysical Prospecting. 2018. V. 66. I. 8. P. 1485–1502.
  20. Khokhlov N.I., Favorskaya A.V., Stetsyuk V.O., Mitskovets I.A. Grid-characteristic method using Chimera meshes for simulation of elastic waves scattering on geological fractured zones // J. of Comp. Physics. 2021. V. 446. P. 110637.
  21. Исакович М.А. Общая акустика. М.: Наука, 1973.
  22. Sofronov I., Zaitsev N., Dovgilovich L. Multi-block finite-difference method for 3D elastodynamic simulations in anisotropic subhorizontally layered media // Geophysical Prospecting. 2015. V. 63. P. 1142–1160.
  23. Komatitsch D., Tromp J. A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation // Geophysical Journal International. 2003. V. 154. I. 1. P. 146–153.
  24. Челноков Ф.Б. Численное моделирование деформационных динамических процессов в средах со сложной структурой: Дис. … канд. физ. -матем. наук. М.: Моск. физ.-техн. ин-т (гос. ун-т), 2005.
  25. LeVeque R.J. Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, 2002.
  26. Golubev V.I., Nikitin I.S., Vasyukov A.V., Nikitin A.D. Fractured inclusion localization and characterization based on deep convolutional neural networks // Procedia Structural Integrity. 2023. V. 43. P. 29–34.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (81KB)
3.

Download (161KB)

Copyright (c) 2023 А.В. Шевченко, В.И. Голубев

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies