Quasi-Solution Method and Global Minimization of the Residual Functional in Conditionally Well-Posed Inverse Problems

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A class of conditionally well-posed problems characterized by a Hölder conditional stability estimate on a convex compact set in a Hilbert space is considered. The operator of the direct problem and the right-hand side of the equation are given with errors, and the derivatives of the exact and perturbed operators are not assumed to be close to each other. The convexity and single-extremality of the residual functional of the quasi-solution method are examined. For this functional, each of its stationary points on the set of conditional well-posedness that lies not too far from the sought solution of the original inverse problem is shown to belong to a small neighborhood of the solution. The diameter of this neighborhood is estimated in terms of the errors in the input data. It is shown that this neighborhood is an attractor of the iterations of the gradient projection method, and the convergence rate of the iterations to the attractor is estimated. The necessity of the used conditional stability estimate for the existence of iterative processes with the indicated properties is established.

About the authors

M. Yu. Kokurin

Mari State University

Author for correspondence.
Email: kokurinm@yandex.ru
424001, Yoshkar-Ola, Russia

References

  1. Треногин В.А. Функциональный анализ. М.: Наука, 1980.
  2. Бакушинский А.Б., Кокурин М.Ю. Алгоритмический анализ нерегулярных операторных уравнений. М.: ЛЕНАНД, 2012.
  3. Лаврентьев М.М., Романов В.Г., Шишатский С.П. Некорректные задачи математической физики и анализа. М.: Наука, 1980.
  4. Кабанихин С.И. Обратные и некорректные задачи. Новосибирск: Сиб. науч. изд-во, 2008.
  5. Романов В.Г. Устойчивость в обратных задачах. М.: Научный мир, 2004.
  6. Isakov V. Inverse Problems for Partial Differential Equations. N.Y.: Springer, 2006.
  7. Кокурин М.Ю. Об условно корректных и обобщенно корректных задачах // Ж. вычисл. матем. и матем. физ. 2013. Т. 53. № 6. С. 857–866.
  8. Kokurin M.Yu. On a characteristic property of conditionally well-posed problems // J. Inv. Ill-Posed Probl. 2015. V. 23. № 3. P. 245–262.
  9. Тихонов А.Н., Леонов А.С., Ягола А.Г. Нелинейные некорректные задачи. М.: Наука, Физматлит, 1995.
  10. Васильев Ф.П. Методы решения экстремальных задач. М.: Наука, 1981.
  11. Красносельский М.А., Вайникко Г.М., Забрейко П.П., Рутицкий Я.Б., Стеценко В.Я. Приближенное решение операторных уравнений. М.: Наука, 1969.
  12. Kokurin M.Yu. On stable finite dimensional approximation of conditionally well-posed inverse problems // I-nv. Probl. 2016. V. 32. № 10. 105007.
  13. Kokurin M.Yu. Stable gradient projection method for nonlinear conditionally well-posed inverse problems // J. Inv. Ill-posed Probl. 2016. V. 24. № 3. P. 323–332.
  14. Поляк Б.Т. Введение в оптимизацию. М.: Наука, 1983.
  15. Кокурин М.Ю. О кластеризации стационарных точек функционалов невязки условно-корректных обратных задач // Сиб. журн. вычисл. матем. 2018. Т. 21. № 4. С. 393–406.
  16. Леонов А.С. О возможности получения линейных оценок точности приближенных решений обратных задач // Изв. вуз. Матем. 2016. № 10. С. 29–35.

Copyright (c) 2023 М.Ю. Кокурин

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies