Development of a reproducible and scalable method for the synthesis of biologically active pyrazolo[1,5-a]pyrimidine derivatives

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A reproducible and scalable method for the synthesis was developed, and a series of 3,6-substituted pyrazolo[1,5- a ]pyrimidines, which are the basis for the rational design of selective inhibitors of AMP-activated protein kinase, was obtained and characterized. In the course of the formation of new types of carbon skeleton, the possibility of applying Suzuki-Miyaura cross-coupling with Buchwald ligands to form C-C bond in the sterically hindered position 6 of 5,7-dimethyl-substituted pyrazolo[1,5- a ]pyrimidine was shown.

Sobre autores

D. Novikova

St. Petersburg State Institute of Technology (Technical University)

Email: dc.novikova@gmail.com

F. Darwish

St. Petersburg State Institute of Technology (Technical University)

T. Grigoreva

St. Petersburg State Institute of Technology (Technical University)

V. Tribulovich

St. Petersburg State Institute of Technology (Technical University)

Bibliografia

  1. Trefts E., Shaw R.J. // Mol. Cell. 2021. Vol. 81. N 18. P. 3677. doi: 10.1016/j.molcel.2021.08.015
  2. Tarasiuk O., Miceli M., Di Domizio A., Nicolini G. // Biology. 2022. Vol. 11. N 7. P. 1041. doi: 10.3390/biology11071041
  3. Новикова Д.С., Гарабаджиу А.В., Мелино Дж., Барлев Н.А., Трибулович В.Г. // Изв. АН. Сер. хим. 2015. № 7. С. 1497
  4. Novikova D.S., Garabadzhiu A.V., Melino G., Barlev N.A., Tribulovich V.G. // Russ. Chem. Bull. 2015. Vol. 64. N 7. P. 1497. doi: 10.1007/s11172-015-1036-x
  5. Russell F.M., Hardie D.G. // Int. J. Mol. Sci. 2021. Vol. 22. N 1. P. 186. doi: 10.3390/ijms22010186
  6. Novikova D.S., Grigoreva T.A., Ivanov G.S., Barlev N.A., Tribulovich V.G. // ChemMedChem. 2020. Vol. 15. N 24. P. 2521. doi: 10.1002/cmdc.202000579
  7. Novikova D.S., Grigoreva T.A., Zolotarev A.A., Garabadzhiu, A.V., Tribulovich, V.G. // RSC Adv. 2018. Vol. 8. N 60., P. 34543. doi: 10.1039/C8RA07576J
  8. Dasgupta B., Seibel W. // Methods Mol. Biol. 2018. Vol. 1732. P. 195. doi: 10.1007/978-1-4939-7598-3_12
  9. Dite T.A., Langendorf C.G., Hoque A., Galic S., Rebello R.J., Ovens A.J., Lindqvist L.M., Ngoei K.R.W., Ling N.X.Y., Furic L., Kemp B.E., Scott J.W., Oakhill J.S. // J. Biol. Chem. 2018. Vol. 293. N 23. P. 8874. doi: 10.1074/jbc.RA118.003547
  10. Zhou G., Myers R., Li Y., Chen Y., Shen X., Fenyk-Melody J., Wu M., Ventre J., Doebber T., Fujii N., Musi N., Hirshman M.F., Goodyear L.J., Moller D.E. // J. Clin. Invest. 2001. Vol. 108. N 8. P. 1167. doi: 10.1172/JCI13505
  11. Fraley M.E., Rubino R.S., Hoffman W.F., Hambaugh S.R., Arrington K.L., Hungate R.W., Bilodeau M.T., Tebben A.J., Rutledge R.Z., Kendall R.L., McFall R.C., Huckle W.R., Coll K.E., Thomas K.A. // Bioorg. Med. Chem. Lett. 2002. Vol. 12. N 24. P. 3537. doi: 10.1016/s0960-894x(02)00827-2
  12. Cuny G.D., Yu P.B., Laha J.K., Xing X., Liu J.F., Lai C.S., Deng D.Y., Sachidanandan C., Bloch K.D., Peterson R.T. // Bioorg. Med. Chem. Lett. 2008. Vol. 18. N 15. P. 4388. doi: 10.1016/j.bmcl.2008.06.052
  13. Cherukupalli S., Karpoormath R., Chandrasekaran B., Hampannavar G.A., Thapliyal N., Palakollu V.N. // Eur. J. Med. Chem. 2017. Vol. 126. P. 298. doi: 10.1016/j.ejmech.2016.11.019
  14. Arias-Gómez A., Godoy A., Portilla J. // Molecules. 2021. Vol. 26. N 9. P. 2708. doi: 10.3390/molecules26092708
  15. Moszczyński-Pętkowski R., Majer J., Borkowska M., Bojarski Ł., Janowska S., Matłoka M., Stefaniak F., Smuga D., Bazydło K., Dubiel K., Wieczorek M. // Eur. J. Med. Chem. 2018. Vol. 155. P. 96. doi: 10.1016/j.ejmech.2018.05.043
  16. Prasanth C.P., Ebbin J., Abhijith A., Nair D.S., Ibnusaud I., Raskatov J., Singaram B. // J. Org. Chem. 2018. Vol. 83. N 3. P. 1431. doi: 10.1021/acs.joc.7b02993
  17. Rüger N., Roatsch M., Emmrich T., Franz H., Schüle R., Jung M., Link A. // ChemMedChem. 2015. Vol. 10. N 11. P. 1875. doi: 10.1002/cmdc.201500335
  18. Kaushik M.P., Vaidyanathaswamy R. // Phosphorus, Sulfur, Silicon, Relat. Elem. 1995. Vol. 102. N 1-4. P. 45. doi: 10.1080/10426509508042541
  19. Borne R.F., Aboul-Enein H.Y. // J. Heterocycl. Chem. 1980. Vol. 17. N 7. P. 1609. doi: 10.1002/jhet.5570170753
  20. Demchuk O.P., Hryshchuk O.V., Vashchenko B.V., Radchenko D.S., Kovtunenko V.O., Komarov I.V., Grygorenko O.O. // Eur. J. Org. Chem. 2019. Vol. 2019. N 34. P. 5937. doi: 10.1002/ejoc.201901001
  21. Trofimenko S. // J. Org. Chem. 1963. Vol. 28. N 11. P. 3243. doi: 10.1021/jo01046a526
  22. Tomsho J.W., McGuireb J.J., Coward J.K. // Org. Biomol. Chem. 2005. Vol. 3. N 18. P. 3388. doi: 10.1039/B505907K
  23. Chen H.J., Chew C.Y., Chang E.H., Tu Y.W., Wei L.Y., Wu B.H., Chen C.H., Yang Y.T., Huang S.C., Chen J.K., Chen I.C., Tan K.T. // J. Am. Chem. Soc. 2018. Vol. 140. N 15. P. 5224. doi: 10.1021/jacs.8b01159
  24. Tribulovich V.G., Garabadzhiu A.V., Kalvin'sh I. // Pharm. Chem. J. 2011. Vol. 45. N 4. P. 241. doi: 10.1007/s11094-011-0605-z
  25. Barder T.E., Walker S.D., Martinelli J.R., Buchwald S.L. // J. Am. Chem. Soc. 2005. Vol. 127. N 13. P. 4685. doi: 10.1021/ja042491j

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies