Development of a reproducible and scalable method for the synthesis of biologically active pyrazolo[1,5-a]pyrimidine derivatives

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A reproducible and scalable method for the synthesis was developed, and a series of 3,6-substituted pyrazolo[1,5- a ]pyrimidines, which are the basis for the rational design of selective inhibitors of AMP-activated protein kinase, was obtained and characterized. In the course of the formation of new types of carbon skeleton, the possibility of applying Suzuki-Miyaura cross-coupling with Buchwald ligands to form C-C bond in the sterically hindered position 6 of 5,7-dimethyl-substituted pyrazolo[1,5- a ]pyrimidine was shown.

Авторлар туралы

D. Novikova

St. Petersburg State Institute of Technology (Technical University)

Email: dc.novikova@gmail.com

F. Darwish

St. Petersburg State Institute of Technology (Technical University)

T. Grigoreva

St. Petersburg State Institute of Technology (Technical University)

V. Tribulovich

St. Petersburg State Institute of Technology (Technical University)

Әдебиет тізімі

  1. Trefts E., Shaw R.J. // Mol. Cell. 2021. Vol. 81. N 18. P. 3677. doi: 10.1016/j.molcel.2021.08.015
  2. Tarasiuk O., Miceli M., Di Domizio A., Nicolini G. // Biology. 2022. Vol. 11. N 7. P. 1041. doi: 10.3390/biology11071041
  3. Новикова Д.С., Гарабаджиу А.В., Мелино Дж., Барлев Н.А., Трибулович В.Г. // Изв. АН. Сер. хим. 2015. № 7. С. 1497
  4. Novikova D.S., Garabadzhiu A.V., Melino G., Barlev N.A., Tribulovich V.G. // Russ. Chem. Bull. 2015. Vol. 64. N 7. P. 1497. doi: 10.1007/s11172-015-1036-x
  5. Russell F.M., Hardie D.G. // Int. J. Mol. Sci. 2021. Vol. 22. N 1. P. 186. doi: 10.3390/ijms22010186
  6. Novikova D.S., Grigoreva T.A., Ivanov G.S., Barlev N.A., Tribulovich V.G. // ChemMedChem. 2020. Vol. 15. N 24. P. 2521. doi: 10.1002/cmdc.202000579
  7. Novikova D.S., Grigoreva T.A., Zolotarev A.A., Garabadzhiu, A.V., Tribulovich, V.G. // RSC Adv. 2018. Vol. 8. N 60., P. 34543. doi: 10.1039/C8RA07576J
  8. Dasgupta B., Seibel W. // Methods Mol. Biol. 2018. Vol. 1732. P. 195. doi: 10.1007/978-1-4939-7598-3_12
  9. Dite T.A., Langendorf C.G., Hoque A., Galic S., Rebello R.J., Ovens A.J., Lindqvist L.M., Ngoei K.R.W., Ling N.X.Y., Furic L., Kemp B.E., Scott J.W., Oakhill J.S. // J. Biol. Chem. 2018. Vol. 293. N 23. P. 8874. doi: 10.1074/jbc.RA118.003547
  10. Zhou G., Myers R., Li Y., Chen Y., Shen X., Fenyk-Melody J., Wu M., Ventre J., Doebber T., Fujii N., Musi N., Hirshman M.F., Goodyear L.J., Moller D.E. // J. Clin. Invest. 2001. Vol. 108. N 8. P. 1167. doi: 10.1172/JCI13505
  11. Fraley M.E., Rubino R.S., Hoffman W.F., Hambaugh S.R., Arrington K.L., Hungate R.W., Bilodeau M.T., Tebben A.J., Rutledge R.Z., Kendall R.L., McFall R.C., Huckle W.R., Coll K.E., Thomas K.A. // Bioorg. Med. Chem. Lett. 2002. Vol. 12. N 24. P. 3537. doi: 10.1016/s0960-894x(02)00827-2
  12. Cuny G.D., Yu P.B., Laha J.K., Xing X., Liu J.F., Lai C.S., Deng D.Y., Sachidanandan C., Bloch K.D., Peterson R.T. // Bioorg. Med. Chem. Lett. 2008. Vol. 18. N 15. P. 4388. doi: 10.1016/j.bmcl.2008.06.052
  13. Cherukupalli S., Karpoormath R., Chandrasekaran B., Hampannavar G.A., Thapliyal N., Palakollu V.N. // Eur. J. Med. Chem. 2017. Vol. 126. P. 298. doi: 10.1016/j.ejmech.2016.11.019
  14. Arias-Gómez A., Godoy A., Portilla J. // Molecules. 2021. Vol. 26. N 9. P. 2708. doi: 10.3390/molecules26092708
  15. Moszczyński-Pętkowski R., Majer J., Borkowska M., Bojarski Ł., Janowska S., Matłoka M., Stefaniak F., Smuga D., Bazydło K., Dubiel K., Wieczorek M. // Eur. J. Med. Chem. 2018. Vol. 155. P. 96. doi: 10.1016/j.ejmech.2018.05.043
  16. Prasanth C.P., Ebbin J., Abhijith A., Nair D.S., Ibnusaud I., Raskatov J., Singaram B. // J. Org. Chem. 2018. Vol. 83. N 3. P. 1431. doi: 10.1021/acs.joc.7b02993
  17. Rüger N., Roatsch M., Emmrich T., Franz H., Schüle R., Jung M., Link A. // ChemMedChem. 2015. Vol. 10. N 11. P. 1875. doi: 10.1002/cmdc.201500335
  18. Kaushik M.P., Vaidyanathaswamy R. // Phosphorus, Sulfur, Silicon, Relat. Elem. 1995. Vol. 102. N 1-4. P. 45. doi: 10.1080/10426509508042541
  19. Borne R.F., Aboul-Enein H.Y. // J. Heterocycl. Chem. 1980. Vol. 17. N 7. P. 1609. doi: 10.1002/jhet.5570170753
  20. Demchuk O.P., Hryshchuk O.V., Vashchenko B.V., Radchenko D.S., Kovtunenko V.O., Komarov I.V., Grygorenko O.O. // Eur. J. Org. Chem. 2019. Vol. 2019. N 34. P. 5937. doi: 10.1002/ejoc.201901001
  21. Trofimenko S. // J. Org. Chem. 1963. Vol. 28. N 11. P. 3243. doi: 10.1021/jo01046a526
  22. Tomsho J.W., McGuireb J.J., Coward J.K. // Org. Biomol. Chem. 2005. Vol. 3. N 18. P. 3388. doi: 10.1039/B505907K
  23. Chen H.J., Chew C.Y., Chang E.H., Tu Y.W., Wei L.Y., Wu B.H., Chen C.H., Yang Y.T., Huang S.C., Chen J.K., Chen I.C., Tan K.T. // J. Am. Chem. Soc. 2018. Vol. 140. N 15. P. 5224. doi: 10.1021/jacs.8b01159
  24. Tribulovich V.G., Garabadzhiu A.V., Kalvin'sh I. // Pharm. Chem. J. 2011. Vol. 45. N 4. P. 241. doi: 10.1007/s11094-011-0605-z
  25. Barder T.E., Walker S.D., Martinelli J.R., Buchwald S.L. // J. Am. Chem. Soc. 2005. Vol. 127. N 13. P. 4685. doi: 10.1021/ja042491j

© Russian Academy of Sciences, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>