Phenalenyl-substituted stilbenes as the basis for spin switches: quantum-chemical modeling

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Isomers of stilbenes containing phenalenyl substituents in the para - and meta -positions of phenyl rings were studied by means of density functional theory method. Exchange coupling in structures with the trans -form of stilbenes is absent. In the cis -isomer of a meta -substituted compound, the state with a closed electron shell is stabilized due to two-electron multicenter interactions, which is confirmed by CASSCF calculations. The predicted transition between the triplet and singlet states as a result of trans-cis isomerization opens up prospects for using the discovered effect in the development of organic spin switches.

作者简介

A. Starikova

Institute of Physical and Organic Chemistry, Southern Federal University

Email: aastarikova@sfedu.ru

M. Chegerev

Institute of Physical and Organic Chemistry, Southern Federal University

A. Starikov

Institute of Physical and Organic Chemistry, Southern Federal University

参考

  1. Matsuda K., Irie M. // J. Am. Chem. Soc. 2000. Vol. 122. P. 7195. doi: 10.1021/ja000605v
  2. Matsuda K., Irie M. // Chem. Lett. 2000. Vol. 1. P. 16. doi: 10.1246/cl.2000.16
  3. Nishizawa S., Hasegawa J., Matsuda K. // J. Phys. Chem. C. 2015. Vol. 119. P. 20169. doi: 10.1021/acs.jpcc.5b06738
  4. Huang J., Wang Y.-F., Xu L., Liu Y.-M., Zhou G., Li J., Li Z.-R. // J. Phys. Org. Chem. 2019. Vol. 32. P. e3973. doi: 10.1002/poc.3973
  5. Saha A., Latif I.A., Datta S.N. // J. Phys. Chem. (A). 2011. Vol. 115. N. 8. P. 1371. doi: 10.1021/jp107049u
  6. Bhattacharjee U., Panda A., Latif I.A., Datta S.N. // J. Phys. Chem. (A). 2010. Vol. 114. P. 6701. doi: 10.1021/jp102939m.
  7. Ravat P., Šolomek T., Häussinger D., Blacque O., Juríček M. // J. Am. Chem. Soc. 2018. Vol. 140. P. 10839. doi: 10.1021/Jacs.8B05465
  8. Šolomek T., Ravat P., Mou Z., Kertesz M., Juríček M. // J. Org. Chem. 2018. Vol. 83. P. 4769. doi: 10.1021/Acs.Joc.8B00656
  9. Günther K., Grabicki N., Battistella B., Grubert L., Dumele O. // J. Am. Chem. Soc. 2022. Vol. 144. P. 8707. doi: 10.1021/jacs.2c02195
  10. Sato K., Nakazawa S., Rahimi R., Ise T., Nishida S., Yoshino T., Mori N., Toyota K., Shiomi D., Yakiyama Y., Morita Y., Kitagawa M., Nakasuji K., Nakahara M., Hara H., Carl P., Höfer P., Takui T. // J. Mater. Chem. 2009. Vol. 19. P. 3739. doi: 10.1039/B819556K
  11. Ratera I., Veciana J. // Chem. Soc. Rev. 2012. Vol. 41. P. 303. doi: 10.1039/C1CS15165G
  12. Sato O. // Nat. Chem. 2016. Vol. 8. P. 644. doi: 10.1038/nchem.2547
  13. Третьяков Е.В., Овчаренко В.И. // Усп. хим. 2009. T. 78. P.1051
  14. Tretyakov E.V., Ovcharenko V.I. // Rus. Chem. Rev. 2009. Vol. 78. P. 971. doi: 10.1070/RC2009v078n11ABEH004093
  15. Tolstikov S., Tretyakov E., Fokin S., Suturina E., Romanenko G., Bogomyakov A., Stass D., Maryasov A., Fedin M., Gritsan N., Ovcharenko V. // Chem. Eur. J. 2014. Vol. 20. P. 2793. doi: 10.1002/chem.201302681
  16. Tretyakov E.V., Zhivetyeva S.I., Petunin P.V., Gorbunov D.E., Gritsan N.P., Bagryanskaya I.Y., Bogomyakov A.S., Postnikov P.S., Kazantsev M.S., Trusova M.E., Shundrina I.K., Zaytseva E.V., Parkhomenko D.A., Bagryanskaya E.G., Ovcharenko V.I. // Angew. Chem. Int. Ed. 2020. Vol. 59. P. 20704. doi: 10.1002/anie.202010041
  17. Tretyakov E.V., Petunin P.V., Zhivetyeva S.I., Gorbunov D.E., Gritsan N.P., Fedin M.V., Stass D.V., Samoilova R.I., Bagryanskaya I.Y., Shundrina I.K., Bogomyakov A.S., Kazantsev M.S., Postnikov P.S., Trusova M.E., Ovcharenko V.I. // J. Am. Chem. Soc. 2021. Vol. 143. P. 8164. doi: 10.1021/jacs.1c02938
  18. Третьяков Е.В., Овчаренко В.И., Терентьев А.О., Крылов И.Б., Магдесиева Т.В., Мажукин Д.Г., Грицан Н.П. // Усп. хим. 2022. Т. 91. P. RCR5025
  19. Tretyakov E.V., Ovcharenko V.I., Terent'ev A.O., Krylov I.B., Magdesieva T.V., Mazhukin D.G., Gritsan N.P. // Russ. Chem. Rev. 2022. 91. P. 1. doi: 10.1070/RCR5025
  20. Goto K., Kubo T., Yamamoto K., Nakasuji K., Sato K., Shiomi D., Takui T., Kubota M., Kobayashi T., Yakusi K., Ouyang J. // J. Am. Chem. Soc. 1999. Vol. 121. P. 1619. doi: 10.1021/ja9836242
  21. Inoue J., Fukui K., Kubo T., Nakazawa S., Sato K., Shiomi D., Morita Y., Yamamoto K., Takui T., Nakasuji K. // J. Am. Chem. Soc. 2001. Vol. 123. P. 12702. doi: 10.1021/ja016751y
  22. Pavliček N., Mistry A., Majzik Z., Moll N., Meyer G., Fox D. J., Gross L. // Nat. Nanotechnol. 2017. Vol. 12. P. 308. doi: 10.1038/nnano.2016.305
  23. Mishra S., Beyer D., Eimre K., Liu J., Berger R., Gröning O., Pignedoli C.A., Müllen K., Fasel R., Feng X., Ruffieux P. // J. Am. Chem. Soc. 2019. Vol. 141. P. 10621. doi: 10.1021/jacs.9b05319
  24. Su J., Telychko M., Hu P., Macam G., Mutombo P., Zhang H., Bao Y., Cheng F., Huang Z.Q., Qiu Z., Tan S.J.R., Lin H., Jelínek P., Chuang F.C., Wu J., Lu J. // Sci. Adv. 2019. Vol. 5. P. eaav7717. doi: 10.1126/sciadv.aav7717
  25. Su J., Fan W., Mutombo P., Peng X., Song S., Ondráček M., Golub P., Brabec J., Veis L., Telychko M., Jelínek P., Wu J., Lu J. // Nano Lett. 2021. Vol. 21. P. 861. doi: 10.1021/acs.nanolett.0c04627
  26. Mishra S., Xu K., Eimre K., Komber H., Ma J., Pignedoli C.A., Fasel R., Feng X., Ruffieux P. // 2021. Vol. 13. P. 1624. doi: 10.1039/d0nr08181g
  27. Beaujean P., Kertesz M. // Theor. Chem. Acc. 2015. Vol. 134. P. 147. doi: 10.1007/s00214-015-1750-3
  28. Mou Z., Kubo T., Kertesz M. // Chem. Eur. J. 2015. Vol. 21. P. 18230. doi: 10.1002/chem.201503409
  29. Mou Z., Kertesz M. // Angew. Chem. Int. Ed. 2017. Vol. 56. P. 10188. doi: 10.1002/anie.201704941
  30. Mou Z., Tian Y-H., Kertesz M. // Phys. Chem. Chem. Phys. 2017. Vol. 19. P. 24761. doi: 10.1039/C7CP04637E.
  31. Kertesz M. // Chem. - Eur. J. 2019. Vol. 25. P. 400. doi: 10.1002/chem.201802385
  32. Cui Z.-H., Wang M.-H., Lischka H., Kertesz M. // J. Am. Chem. Soc. 2021. Vol. 1. P. 1647. doi: 10.1021/jacsau.1c00272
  33. Pal A.K., Hansda S., Datta S.N. // J. Phys. Chem. (A). 2013. Vol. 117. P. 1773. doi: 10.1021/jp306715y
  34. Стариков А.Г., Чегерев М.Г., Старикова А.А., Минкин В.И. // Изв. АН. Сер. xим. 2022. № 7. C. 1369
  35. Starikov A.G., Chegerev M.G., Starikova A.A., Minkin V.I. // Russ. Chem. Bull. 2022. Vol. 71. P. 1369. doi: 10.1007/s11172-022-3542-y
  36. Стариков А.Г., Чегерев М.Г., Старикова А.А., Минкин В.И. // ЖСХ. 2023. Т. 64. № 1. C. 104314
  37. Starikov A.G, Chegerev M.G., Starikova A.A. // J. Struct. Chem. 2023. Vol. 64. P. 58. doi: 10.1134/S0022476623010031
  38. Likhtenshtein G., Stilbenes. Applications in Chemistry, Life Sciences and Materials Science. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA. 2010. P. 360 p.
  39. Baumgarten M., Karabunarliev S. // Chem. Phys. 1999. Vol. 244. P. 35. doi: 10.1016/S0301-0104(99)00090-7
  40. Ko K.C., Park Y.G., Cho D., Lee J.Y. // J. Phys. Chem. (A). 2014. Vol. 118. P. 9596. doi: 10.1021/jp5072007
  41. Takamuku S., Nakano M., Kertesz M. // Chem. Eur. J. 2017. Vol. 23. P. 7474. doi: 10.1002/chem.201700999
  42. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., Li X., Caricato M., Marenich A.V., Bloino J., Janesko B.G., Gomperts R., Mennucci B., Hratchian H.P., Ortiz J.V., Izmaylov A.F., Sonnenberg J.L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V.G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery Jr. J.A., Peralta J.E., Ogliaro F., Bearpark M.J., Heyd J.J., Brothers E.N., Kudin K.N., Staroverov V.N., Keith T.A., Kobayashi R., Normand J., Raghavachari K., Rendell A.P., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Millam J.M., Klene M., Adamo C., Cammi R., Ochterski J.W., Martin R.L., Morokuma K., Farkas O., Foresman J.B., Fox D.J., Gaussian16. Revision A.03. Wallingford: Gaussian, 2016.
  43. Zhao Y., Schultz N.E., Truhlar D.G. // J. Chem. Theory Comput. 2006. Vol. 2. P. 364. doi: 10.1021/ct0502763
  44. Becke A.D. // J. Chem. Phys. 1993. Vol. 98. P. 5648. doi: 10.1063/1.464913
  45. Grimme S., Ehrlich S., Goerigk L. // J. Comp. Chem. 2011. Vol. 32. P. 1456. doi: 10.1002/jcc.21759
  46. Goerigk L., Grimme S. // Phys. Chem. Chem. Phys. 2011. Vol. 13. P. 6670. doi: 10.1039/c0cp02984j
  47. Chegerev M.G, Piskunov A.V., Tsys K., Starikov A., Jurkschat K., Baranov E.V., Stash A.I., Fukin G. // Eur. J. Inorg. Chem. 2019. N 6. P. 875. doi: 10.1002/ejic.201801383
  48. Arsenyeva K.V., Klimashevskaya A.V., Pashanova K.I., Trofimova O.Yu., Chegerev M.G., Starikova A.A., Cherkasov A.V., Fukin G.K., Yakushev I.A., Piskunov A.V. // Appl. Organomet. Chem. 2022. Vol. 36. N 4. P. e6593. doi: 10.1002/aoc.6593
  49. Minkin V.I., Starikov A.G., Starikova A.A., Gapurenko O.A., Minyaev R.M., Boldyrev A.I. // Phys. Chem. Chem. Phys. 2020. Vol. 22. P. 1288. doi: 10.1039/C9CP05922A
  50. Старикова А.А., Стариков А.Г., Миняев Р.М., Болдырев А.И., Минкин В.И. // Докл. АН. 2018. Т. 478. № 4. С. 419
  51. Starikova A.A., Starikov A.G., Minyaev R.M., Boldyrev A.I., Minkin V.I. // Doklady Chem. 2018. Vol. 478. P. 21. doi: 10.1134/S0012500818020015
  52. Minkin V.I., Starikov A.G., Starikova A.A. // J. Phys. Chem. (A). 2021. Vol. 125. P. 6562. doi: 10.1021/acs.jpca.1c02794
  53. Стариков А.Г., Чегерев М.Г., Старикова А.А., Минкин В.И. // Докл. АН. 2022. Т. 503. С. 20
  54. Starikov A.G., Chegerev M.G., Starikova A.A., Minkin V.I. // Doklady Chem. 2022. Vol. 503. P. 51. doi: 10.1134/S0012500822030028
  55. Noodleman L. // J. Chem. Phys. 1981. Vol. 74. P. 5737. doi: 10.1063/1.440939
  56. Shoji M., Koizumi K., Kitagawa Y., Kawakami T., Yamanaka S., Okumura M., Yamaguchi K. // Chem. Phys. Lett. 2006. Vol. 432. P. 343. doi: 10.1016/j.cplett.2006.10.023
  57. Chemcraft, version 1.7, 2013. http://www.chemcraftprog.com.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».