Hydrogen bound self-associates N-(6-bromocyclohex-3-уn-1-yl)- and N-(7-bromobicyclo[2.2.1]hept-2-yl)-N′-(triflyl)ethanimidamide

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The supramolecular structure of N -(6-bromocyclohex-3-en-1-yl)- and N -(7-bromobicyclo[2.2.1]hept-2-yl) N ′-(triflyl)ethanimidamide was analyzed according to XRD and IR spectroscopy in various states in a wide temperature range and quantum chemical calculations. The supramolecular structure of the studied amidines is based on linear dimers of the E-syn -conformer with N-H∙∙∙O=S hydrogen bonds, which form polymer chains. The layered structure of N -(6-bromocyclohex-3-en-1-yl)- N ′-(triflyl)ethanimidamide is formed by C-H∙∙∙O, C-H∙∙∙Br, and C-H∙∙∙F contacts, and in the case of N -(7-bromobicyclo[2.2.1]hept-2-yl)- N ′-(triflyl)ethanimidamide by C-H∙∙∙O contacts. The molecular electrostatic potential maps of the studied amidines were obtained and their correspondence between the strengths of H-bonds and shortened contacts in both compounds was shown. Comparison of experimental and calculated frequencies ν(NH) in monomers and dimers of N -(6bromocyclohex-3-en-1-yl)- N ′-(triflyl)ethanimidamide showed the presence of conformational E-syn → E-anti transitions with the formation of cyclic dimers, the proportion of which increases with decreasing temperature.

Sobre autores

L. Oznobikhina

A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences

N. Chipanina

A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences

I. Sterkhova

A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences

V. Astakhova

A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences

M. Moskalik

A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences

B. Shainyan

A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences

Email: bagrat@irioch.irk.ru

Bibliografia

  1. Moskalik M.Yu., Garagan I.A., Astakhova V.V., Sterkhova I.V., Shainyan B.A. // Tetrahedron. 2021. Vol. 88. N 12. 132145. doi: 10.1016/j.tet.2021.132145
  2. Moskalik M.Yu., Shainyan B.A., Ushakov I.A., Sterkhova I.V., Astakhova V.V. // Tetrahedron. 2020. Vol. 76. N 11. 131018. doi: 10.1016/j.tet.2020.131018
  3. Patai S. The Chemistry of Amidines and Imidates. London: John Wiley & Sons, 1975.
  4. Patai S, Rappoport Z. The Chemistry of Amidines and Imidates. Chichester: John Wiley & Sons, 1991. Vol. 2.
  5. Kalz K.F., Hausmann A., Dechert S., Meyer S., John M., Meyer F. // Chem. Eur. J. 2016. Vol. 22. N 50. Р. 18190. doi.org/10.1002/chem.201603850
  6. Raczyńska E., Laurence C. // Analyst. 1992. Vol. 117. N 3. Р. 375. doi: 10.1039/an9921700375
  7. Raczyńska E., Laurence C., Berthelot M. // Analyst. 1994. Vol. 119. N 4. Р. 683. doi: 10.1039/AN9941900683
  8. Bureiko S.F., Golubev N.S., Kucherov S.Y., Shurukhina A.V. // J. Mol. Struct. 2007. Vol. 844-845. P. 70. doi: 10.1016/j.molstruc.2007.02.041
  9. Ren T., Radak S., Ni Y., Xu G., Lin C., Shaffer K.L., DeSilva V.J. // Chem. Crystallogr. 2002. Vol. 32. N 7. Р. 197. doi: 10.1023/A:1020244020581
  10. Anulewicz R., Wawer I., Krygowski T.M., Männle F., Limbach H.H. // J. Am. Chem. Soc. 1997. Vol. 119. N 50. Р. 12223. doi: 10.1021/ja970699h
  11. Kraft A., Peters L., Powell H. // Tetrahedron. 2002. Vol. 58. N 18. P. 3499. doi: 10.1016/S0040-4020(02)00301-0
  12. Sterkhova I.V., Fedorova T.E., Moskalik M.Y. // Russ. J. Gen. Chem. 2021. Vol. 91. No 5. P. 807. doi.org/10.1134/S107036322105008X
  13. Shainyan B.A., Chipanina N.N., Oznobikhina L.P., Sterkhova I.V., Moskalik M.Y., Astakhova V.V., Ganin A.S. // Struct. Chem. 2023. Vol. 34. No 1. P.139. doi: 10.1007/s11224-022-02032-9
  14. Shainyan B.A., Chipanina N.N., Oznobikhina L.P., Sterkhova I.V., Astakhova V.V., Moskalik M.Y. // Struct. Chem. 2023. Vol. 34. doi: 10.1007/s11224-023-02127-x
  15. Bondi A. // J. Phys. Chem. 1964. Vol. 68. No 3. P. 441. doi.org/10.1021/j100785a001
  16. Desiraju G.R. // Acc. Chem. Res. 1996. Vol. 29. N 9. P. 441. doi: 10.1021/ar950135n
  17. Perras F.A., Marion D., Boisbouvier J., Bryce D.L., Plevin M.J. // Angew. Chem. Int. Ed. 2017. Vol. 56. N 26. P. 7564. doi: 10.1002/anie.201702626
  18. Bartlett G.J., Woolfson D.N. // Protein Sci. 2016. Vol. 25. N 4. P. 887. doi: 10.1002/pro.2896
  19. Grzesiek S., Cordier F., Jaravine V., Barfield M. // Prog. Nucl. Magn. Reson. Spectrosc. 2004. Vol. 45. N 3-4. P. 275. doi: 10.1016/j.pnmrs.2004.08.01
  20. Subha M.A., Narahari S.G. // Chem. Rev. 2016. Vol. 116. N 5. P. 2775. doi: 10.1021/cr500344e
  21. Nelyubina Y.V., Antipin M. Y., Cherepanov I.A., Lyssenko K.A. // Cryst. Eng. Comm. 2010. Vol. 12. N 1. P. 77. doi: 10.1039/B912147A
  22. Bader R.F.W. // Acc. Chem. Res. 1985. Vol. 18. N 1. P. 9. doi: 10.1021/ar00109a003
  23. Grabowski S.J. // Chem. Rev. 2011. Vol. 111. N 4. P. 2597. doi: 10.1021/cr800346f
  24. Sterkhova I.V., Shainyan B.A. // J. Phys. Org. Chem. 2015. Vol. 28. N 7. P. 485. doi: 10.1002/poc.3441
  25. Belogolova E.F., Doronina E.P., Sidorkin V.F., Belogolov M.A. // Comp. Theor. Chem. 2010. Vol. 950. P. 72. doi: 10.1016/j.theochem.2010.03.026
  26. Frish M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam N.J., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. Gaussian 09, revision E.01; Gaussian, Inc.: Wallingford, CT, 2009.
  27. Becke A.D. // J. Chem. Phys. 1993. Vol. 98. N 7. P. 5648. doi: 10.1063/1.464913
  28. Lee C., Yang W., Parr R.G. // Phys. Rev. (B). 1988. Vol. 37. P. 785. N 2. doi: 10.1103/PhysRevB.37.785
  29. Krishnan R., Binkley J.S., Seeger R., Pople J.A. // J. Chem. Phys. 1980. Vol. 72. P. 650. N 1. doi: 10.1063/1.438955
  30. Lu T., Chen F. // J. Comput. Chem. 2012. Vol. 33. No 5. P. 580. doi: 10.1002/jcc.22885

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies