Водородно-связанные самоассоциаты N-(6-бромциклогекс-3-ен-1-ил)- и N-(7-бромбицикло[2.2.1]гепт-2-ил)-N′-(трифлил)этанимидамида

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Проанализирована супрамолекулярная структура N-(6-бромциклогекс-3-ен-1-ил)- и N-(7-бромбицикло[2.2.1]гепт-2-ил)-N′-(трифлил)этанимидамида по данным РСА, ИК спектроскопии в различных состояниях в широком температурном интервале и квантово-химических расчетов. Основу супрамолекулярной структуры исследуемых амидинов составляют линейные димеры E-син -конформера с водородными связями N-H∙∙∙O=S, образующие полимерные цепи. Слоистую структуру N-(6-бромциклогекс-3-ен-1ил)-N′-(трифлил)этанимидамида образуют контакты C-H∙∙∙O, C-H∙∙∙Br и C-H∙∙∙F, а в случае N-(7-бромбицикло[2.2.1]гепт-2-ил)-N′-(трифлил)этанимидамида - контакты C-H∙∙∙O. Получены карты молекулярного электростатического потенциала исследуемых амидинов и показано их соответствие прочности H-связей и укороченных контактов в обоих соединениях. Сравнение экспериментальных и вычисленных частот ν(NH) в мономерах и димерах N-(6-бромциклогекс-3-ен-1-ил)-N′-(трифлил)этанимидамида показало наличие конформационных переходов E-син → E-анти с образованием циклических димеров, доля которых увеличивается при понижении температуры.

Об авторах

Л. П Ознобихина

Иркутский институт химии имени А. Е. Фаворского Сибирского отделения Российской академии наук

Н. Н Чипанина

Иркутский институт химии имени А. Е. Фаворского Сибирского отделения Российской академии наук

И. В Стерхова

Иркутский институт химии имени А. Е. Фаворского Сибирского отделения Российской академии наук

В. В Астахова

Иркутский институт химии имени А. Е. Фаворского Сибирского отделения Российской академии наук

М. Ю Москалик

Иркутский институт химии имени А. Е. Фаворского Сибирского отделения Российской академии наук

Б. А Шаинян

Иркутский институт химии имени А. Е. Фаворского Сибирского отделения Российской академии наук

Email: bagrat@irioch.irk.ru

Список литературы

  1. Moskalik M.Yu., Garagan I.A., Astakhova V.V., Sterkhova I.V., Shainyan B.A. // Tetrahedron. 2021. Vol. 88. N 12. 132145. doi: 10.1016/j.tet.2021.132145
  2. Moskalik M.Yu., Shainyan B.A., Ushakov I.A., Sterkhova I.V., Astakhova V.V. // Tetrahedron. 2020. Vol. 76. N 11. 131018. doi: 10.1016/j.tet.2020.131018
  3. Patai S. The Chemistry of Amidines and Imidates. London: John Wiley & Sons, 1975.
  4. Patai S, Rappoport Z. The Chemistry of Amidines and Imidates. Chichester: John Wiley & Sons, 1991. Vol. 2.
  5. Kalz K.F., Hausmann A., Dechert S., Meyer S., John M., Meyer F. // Chem. Eur. J. 2016. Vol. 22. N 50. Р. 18190. doi.org/10.1002/chem.201603850
  6. Raczyńska E., Laurence C. // Analyst. 1992. Vol. 117. N 3. Р. 375. doi: 10.1039/an9921700375
  7. Raczyńska E., Laurence C., Berthelot M. // Analyst. 1994. Vol. 119. N 4. Р. 683. doi: 10.1039/AN9941900683
  8. Bureiko S.F., Golubev N.S., Kucherov S.Y., Shurukhina A.V. // J. Mol. Struct. 2007. Vol. 844-845. P. 70. doi: 10.1016/j.molstruc.2007.02.041
  9. Ren T., Radak S., Ni Y., Xu G., Lin C., Shaffer K.L., DeSilva V.J. // Chem. Crystallogr. 2002. Vol. 32. N 7. Р. 197. doi: 10.1023/A:1020244020581
  10. Anulewicz R., Wawer I., Krygowski T.M., Männle F., Limbach H.H. // J. Am. Chem. Soc. 1997. Vol. 119. N 50. Р. 12223. doi: 10.1021/ja970699h
  11. Kraft A., Peters L., Powell H. // Tetrahedron. 2002. Vol. 58. N 18. P. 3499. doi: 10.1016/S0040-4020(02)00301-0
  12. Sterkhova I.V., Fedorova T.E., Moskalik M.Y. // Russ. J. Gen. Chem. 2021. Vol. 91. No 5. P. 807. doi.org/10.1134/S107036322105008X
  13. Shainyan B.A., Chipanina N.N., Oznobikhina L.P., Sterkhova I.V., Moskalik M.Y., Astakhova V.V., Ganin A.S. // Struct. Chem. 2023. Vol. 34. No 1. P.139. doi: 10.1007/s11224-022-02032-9
  14. Shainyan B.A., Chipanina N.N., Oznobikhina L.P., Sterkhova I.V., Astakhova V.V., Moskalik M.Y. // Struct. Chem. 2023. Vol. 34. doi: 10.1007/s11224-023-02127-x
  15. Bondi A. // J. Phys. Chem. 1964. Vol. 68. No 3. P. 441. doi.org/10.1021/j100785a001
  16. Desiraju G.R. // Acc. Chem. Res. 1996. Vol. 29. N 9. P. 441. doi: 10.1021/ar950135n
  17. Perras F.A., Marion D., Boisbouvier J., Bryce D.L., Plevin M.J. // Angew. Chem. Int. Ed. 2017. Vol. 56. N 26. P. 7564. doi: 10.1002/anie.201702626
  18. Bartlett G.J., Woolfson D.N. // Protein Sci. 2016. Vol. 25. N 4. P. 887. doi: 10.1002/pro.2896
  19. Grzesiek S., Cordier F., Jaravine V., Barfield M. // Prog. Nucl. Magn. Reson. Spectrosc. 2004. Vol. 45. N 3-4. P. 275. doi: 10.1016/j.pnmrs.2004.08.01
  20. Subha M.A., Narahari S.G. // Chem. Rev. 2016. Vol. 116. N 5. P. 2775. doi: 10.1021/cr500344e
  21. Nelyubina Y.V., Antipin M. Y., Cherepanov I.A., Lyssenko K.A. // Cryst. Eng. Comm. 2010. Vol. 12. N 1. P. 77. doi: 10.1039/B912147A
  22. Bader R.F.W. // Acc. Chem. Res. 1985. Vol. 18. N 1. P. 9. doi: 10.1021/ar00109a003
  23. Grabowski S.J. // Chem. Rev. 2011. Vol. 111. N 4. P. 2597. doi: 10.1021/cr800346f
  24. Sterkhova I.V., Shainyan B.A. // J. Phys. Org. Chem. 2015. Vol. 28. N 7. P. 485. doi: 10.1002/poc.3441
  25. Belogolova E.F., Doronina E.P., Sidorkin V.F., Belogolov M.A. // Comp. Theor. Chem. 2010. Vol. 950. P. 72. doi: 10.1016/j.theochem.2010.03.026
  26. Frish M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam N.J., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. Gaussian 09, revision E.01; Gaussian, Inc.: Wallingford, CT, 2009.
  27. Becke A.D. // J. Chem. Phys. 1993. Vol. 98. N 7. P. 5648. doi: 10.1063/1.464913
  28. Lee C., Yang W., Parr R.G. // Phys. Rev. (B). 1988. Vol. 37. P. 785. N 2. doi: 10.1103/PhysRevB.37.785
  29. Krishnan R., Binkley J.S., Seeger R., Pople J.A. // J. Chem. Phys. 1980. Vol. 72. P. 650. N 1. doi: 10.1063/1.438955
  30. Lu T., Chen F. // J. Comput. Chem. 2012. Vol. 33. No 5. P. 580. doi: 10.1002/jcc.22885

© Российская академия наук, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах