Features of the Synthesis of InGaMgO4 from Nitrate-Organic Precursors and the Study of Its’ Physical Properties
- 作者: Smirnova M.N.1, Kondratyeva O.N.1, Nikiforova G.E.1, Yapryntsev A.D.1, Averin A.A.2, Khoroshilov A.V.1
-
隶属关系:
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
- Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences
- 期: 卷 69, 编号 8 (2024)
- 页面: 1095-1103
- 栏目: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://journals.rcsi.science/0044-457X/article/view/274242
- DOI: https://doi.org/10.31857/S0044457X24080012
- EDN: https://elibrary.ru/XKZION
- ID: 274242
如何引用文章
详细
This work reports on the possibility of producing the InGaMgO4 oxide by two-stage heat treatment of glycine-, starch- and PVA-nitrate precursors. The products formed as a result of their heating at low temperatures (≈ 90°С) were studied by powder X-ray diffraction. It was found that the powder formed from the glycine-nitrate precursor contains nanocrystalline In2O3, and drying of the polymer-nitrate compositions leads to the production of a thermally stable X-ray amorphous product. Its' annealing at temperatures above 800°C allows synthesizing InGaMgO4 powder free of impurity phases. High-temperature treatment of the powder formed from the glycine-nitrate precursor also leads to the production of InGaMgO4, but does not remove the In2O3 impurity. Using scanning electron microscopy, it was found that single-phase InGaMgO4 powders synthesized from polymer-nitrate precursors have a similar grain structure but differ in grain size distribution. Presumably, this difference is due to the structural features of starch and PVA macromolecules used for the preparation of precursors. The InGaMgO4 oxide was characterized using differential scanning calorimetry, Raman and diffuse reflectance spectroscopy. The value of its' band gap energy Eg was determined using the Tauc method.
全文:

作者简介
M. Smirnova
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: smirnova_macha1989@mail.ru
俄罗斯联邦, Moscow
O. Kondratyeva
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: smirnova_macha1989@mail.ru
俄罗斯联邦, Moscow
G. Nikiforova
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: smirnova_macha1989@mail.ru
俄罗斯联邦, Moscow
A. Yapryntsev
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: smirnova_macha1989@mail.ru
俄罗斯联邦, Moscow
A. Averin
Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences
Email: smirnova_macha1989@mail.ru
俄罗斯联邦, Moscow
A. Khoroshilov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: smirnova_macha1989@mail.ru
俄罗斯联邦, Moscow
参考
- Orita M., Takeuchi M., Sakai H. et al. // Jpn. J. Appl. Phys. 1995. V.34. № 11B. P. 1550. http://doi.org/10.7567/JJAP.34.L1550
- Moriga T., Sakamoto T., Sato Y. et al. // J. Solid State Chem. 1999. V. 142. № 1. P. 206. https://doi.org/10.1006/jssc.1998.8036
- Murat A., Medvedeva J.E. // Phys. Rev. B. 2012. V. 85. № 15. P. 155101. http://doi.org/10.1103/PhysRevB.85.155101
- Grajczyk R., Subramanian M.A. // Prog. Solid State Chem. 2015. V. 43. № 1–2. P. 37. http://doi.org/10.1016/j.progsolidstchem.2014.09.001 Kimizuka N., Mohri T. // J. Solid State Chem. 1985. V. 60. № 3. P. 382. https://doi.org/10.1016/0022-4596(85)90290-7
- Kimizuka N., Yamazaki S. Physics and Technology of Crystalline Oxide Semiconductor CAAC-IGZO. Fundamentals. John Wiley & Sons Ltd, 2017.
- Tanaka Y., Wada K., Kobayashi Y. et al. // CrystEngComm. 2019. V. 21. № 19. P. 2985. https://doi.org/10.1039/C9CE00007K
- Lo C., Hsieh T. // Ceram. Int. 2012. V. 38. № 5. P. 3977. https://doi.org/10.1016/j.ceramint.2012.01.052
- Troughton J., Atkinson D. // J. Mater. Chem. C. 2019. V. 7. № 19. P. 12388. https://doi.org/10.1039/C9TC03933C
- Blasse G., Dirksen G.J., Kimizuka N. et al. // Mater. Res. Bull. 1986. V. 21. № 9. P. 1057. https://doi.org/10.1016/0025-5408(86)90221-7
- Meng X., Wang Z., Qiu K. et al. // Cryst. Growth Des. 2018. V. 18. № 8. P. 4691. https://doi.org/10.1021/acs.cgd.8b00672
- Patil K.C., Hedge M.S., Rattan T., Aruna S.T. Chemistry of Nanocrystalline Oxide Materials: Combustion Synthesis, Properties and Applications. Singapore: World Scientific Publishing Co. Pte. Ltd, 2008.
- Rogachev A.S., Mukasyan A.S. // Combust. Explos. Shock Waves. 2010. V. 46. P. 243. https://doi.org/10.1007/s10573-010-0036-2
- Alves A.K., Bergmann C.P., Berutti F.A. Novel Synthesis and Characterization of Nanostructured Materials. Heidelberg: Springer Berlin, 2013.
- Carlos E., Martins R. et al. // Chem. Eur. J. 2020. V. 26. № 42. P. 9099. https://doi.org/10.1002/chem.202000678
- Chick L.A., Pederson L.R., Maupin G.D. et al. // Mater. Lett. 1990. V. 10. № 1–2. P. 6. https://doi.org/10.1016/0167-577X(90)90003-5
- Khaliullin Sh.M., Zhuravlev V.D., Bamburov V.G. et al. // J. Sol-Gel Sci. Technol. 2020. V. 93. P. 251. https://doi.org/10.1007/s10971-019-05189-8
- Novitskaya E., Kelly J.P., Bhaduri S. et al. // Int. Mater. Rev. 2021. V. 66. № 3. P. 188. https://doi.org/10.1080/09506608.2020.1765603
- Mastalska-Poplawska J., Sikora M., Izak P. et al. // J. Sol-Gel Sci. Technol. 2020. V. 96. P. 511. https://doi.org/10.1007/s10971-020-05404-x
- Jiu J., Ge Y., Li X. et al. // Mater. Lett. 2002. V. 54. № 54. P. 260. https://doi.org/10.1016/S0167-577X(01)00573-0
- Klein L., Aparicio M., Jitianu A. Handbook of Sol-Gel Science and Technology. Springer Cham, 2018.
- Kondrat’eva O.N., Smirnova M.N., Nikiforova G.E. et al. // J. Eur. Ceram. Soc. 2021. V. 41. № 13. P. 6559. https://doi.org/10.1016/j.jeurceramsoc.2021.05.063
- Kondrat’eva O.N., Smirnova M.N., Nikiforova G.E. et al. // Ceram. Int. 2023. V. 49. № 1. P. 179. https://doi.org/10.1016/j.ceramint.2022.08.326
- Смирнова М.Н., Кондратьева О.Н., Никифорова Г.Е. и др. // Журн. неорган. химии. 2023. Т. 68. № 5. С. 581. https://doi.org/10.31857/S0044457X22602383
- Golam A.T.M., Eakman J.M., Yarbro S.L. // Ind. Eng. Chem. Res. 1995. V. 34. P. 4577. https://doi.org/10.1021/ie00039a053 https://www. .chem.msu.su/cgi-bin/tkv.pl?show= welcom.html
- Kelly J.T., Wexler A.S. // J. Geophys. Res. 2005. V. 110. № D11201. https://doi.org/10.1029/2004JD005583
- Dorofeeva O.V., Ryzhova O.N. // J. Chem. Thermodyn. 2009. V. 41. № 4. P. 433. https://doi.org/10.1016/j.jct.2008.12.001
- Varma A., Mukasyan A.S., Rogachev A.S. et al. // Chem. Rev. 2016. V. 116. № 23. P. 14493. https://doi.org/10.1021/acs.chemrev.6b00279
- Zhang C., Pei Y., Zhao L. et al. // J. Eur. Ceram. Soc. 2014. V. 34. № 1. P. 63. https://doi.org/10.1016/j.jeurceramsoc.2013.08.001
- Wu M., Hsiao K., Lu H. // Mater. Chem. Phys. 2015. V. 162. P. 386. http://doi.org/10.1016/j.matchemphys.2015.06.003
- Makula P., Pacia M., Macyk W. // J. Phys. Chem. Lett. 2018. V. 9. № 23. P. 6814. https://doi.org/10.1021/acs.jpclett.8b02892
补充文件
