Features of the Synthesis of InGaMgO4 from Nitrate-Organic Precursors and the Study of Its’ Physical Properties

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This work reports on the possibility of producing the InGaMgO4 oxide by two-stage heat treatment of glycine-, starch- and PVA-nitrate precursors. The products formed as a result of their heating at low temperatures (≈ 90°С) were studied by powder X-ray diffraction. It was found that the powder formed from the glycine-nitrate precursor contains nanocrystalline In2O3, and drying of the polymer-nitrate compositions leads to the production of a thermally stable X-ray amorphous product. Its' annealing at temperatures above 800°C allows synthesizing InGaMgO4 powder free of impurity phases. High-temperature treatment of the powder formed from the glycine-nitrate precursor also leads to the production of InGaMgO4, but does not remove the In2O3 impurity. Using scanning electron microscopy, it was found that single-phase InGaMgO4 powders synthesized from polymer-nitrate precursors have a similar grain structure but differ in grain size distribution. Presumably, this difference is due to the structural features of starch and PVA macromolecules used for the preparation of precursors. The InGaMgO4 oxide was characterized using differential scanning calorimetry, Raman and diffuse reflectance spectroscopy. The value of its' band gap energy Eg was determined using the Tauc method.

Full Text

Restricted Access

About the authors

M. N. Smirnova

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Author for correspondence.
Email: smirnova_macha1989@mail.ru
Russian Federation, Moscow

O. N. Kondratyeva

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: smirnova_macha1989@mail.ru
Russian Federation, Moscow

G. E. Nikiforova

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: smirnova_macha1989@mail.ru
Russian Federation, Moscow

A. D. Yapryntsev

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: smirnova_macha1989@mail.ru
Russian Federation, Moscow

A. A. Averin

Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences

Email: smirnova_macha1989@mail.ru
Russian Federation, Moscow

A. V. Khoroshilov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: smirnova_macha1989@mail.ru
Russian Federation, Moscow

References

  1. Orita M., Takeuchi M., Sakai H. et al. // Jpn. J. Appl. Phys. 1995. V.34. № 11B. P. 1550. http://doi.org/10.7567/JJAP.34.L1550
  2. Moriga T., Sakamoto T., Sato Y. et al. // J. Solid State Chem. 1999. V. 142. № 1. P. 206. https://doi.org/10.1006/jssc.1998.8036
  3. Murat A., Medvedeva J.E. // Phys. Rev. B. 2012. V. 85. № 15. P. 155101. http://doi.org/10.1103/PhysRevB.85.155101
  4. Grajczyk R., Subramanian M.A. // Prog. Solid State Chem. 2015. V. 43. № 1–2. P. 37. http://doi.org/10.1016/j.progsolidstchem.2014.09.001 Kimizuka N., Mohri T. // J. Solid State Chem. 1985. V. 60. № 3. P. 382. https://doi.org/10.1016/0022-4596(85)90290-7
  5. Kimizuka N., Yamazaki S. Physics and Technology of Crystalline Oxide Semiconductor CAAC-IGZO. Fundamentals. John Wiley & Sons Ltd, 2017.
  6. Tanaka Y., Wada K., Kobayashi Y. et al. // CrystEngComm. 2019. V. 21. № 19. P. 2985. https://doi.org/10.1039/C9CE00007K
  7. Lo C., Hsieh T. // Ceram. Int. 2012. V. 38. № 5. P. 3977. https://doi.org/10.1016/j.ceramint.2012.01.052
  8. Troughton J., Atkinson D. // J. Mater. Chem. C. 2019. V. 7. № 19. P. 12388. https://doi.org/10.1039/C9TC03933C
  9. Blasse G., Dirksen G.J., Kimizuka N. et al. // Mater. Res. Bull. 1986. V. 21. № 9. P. 1057. https://doi.org/10.1016/0025-5408(86)90221-7
  10. Meng X., Wang Z., Qiu K. et al. // Cryst. Growth Des. 2018. V. 18. № 8. P. 4691. https://doi.org/10.1021/acs.cgd.8b00672
  11. Patil K.C., Hedge M.S., Rattan T., Aruna S.T. Chemistry of Nanocrystalline Oxide Materials: Combustion Synthesis, Properties and Applications. Singapore: World Scientific Publishing Co. Pte. Ltd, 2008.
  12. Rogachev A.S., Mukasyan A.S. // Combust. Explos. Shock Waves. 2010. V. 46. P. 243. https://doi.org/10.1007/s10573-010-0036-2
  13. Alves A.K., Bergmann C.P., Berutti F.A. Novel Synthesis and Characterization of Nanostructured Materials. Heidelberg: Springer Berlin, 2013.
  14. Carlos E., Martins R. et al. // Chem. Eur. J. 2020. V. 26. № 42. P. 9099. https://doi.org/10.1002/chem.202000678
  15. Chick L.A., Pederson L.R., Maupin G.D. et al. // Mater. Lett. 1990. V. 10. № 1–2. P. 6. https://doi.org/10.1016/0167-577X(90)90003-5
  16. Khaliullin Sh.M., Zhuravlev V.D., Bamburov V.G. et al. // J. Sol-Gel Sci. Technol. 2020. V. 93. P. 251. https://doi.org/10.1007/s10971-019-05189-8
  17. Novitskaya E., Kelly J.P., Bhaduri S. et al. // Int. Mater. Rev. 2021. V. 66. № 3. P. 188. https://doi.org/10.1080/09506608.2020.1765603
  18. Mastalska-Poplawska J., Sikora M., Izak P. et al. // J. Sol-Gel Sci. Technol. 2020. V. 96. P. 511. https://doi.org/10.1007/s10971-020-05404-x
  19. Jiu J., Ge Y., Li X. et al. // Mater. Lett. 2002. V. 54. № 54. P. 260. https://doi.org/10.1016/S0167-577X(01)00573-0
  20. Klein L., Aparicio M., Jitianu A. Handbook of Sol-Gel Science and Technology. Springer Cham, 2018.
  21. Kondrat’eva O.N., Smirnova M.N., Nikiforova G.E. et al. // J. Eur. Ceram. Soc. 2021. V. 41. № 13. P. 6559. https://doi.org/10.1016/j.jeurceramsoc.2021.05.063
  22. Kondrat’eva O.N., Smirnova M.N., Nikiforova G.E. et al. // Ceram. Int. 2023. V. 49. № 1. P. 179. https://doi.org/10.1016/j.ceramint.2022.08.326
  23. Смирнова М.Н., Кондратьева О.Н., Никифорова Г.Е. и др. // Журн. неорган. химии. 2023. Т. 68. № 5. С. 581. https://doi.org/10.31857/S0044457X22602383
  24. Golam A.T.M., Eakman J.M., Yarbro S.L. // Ind. Eng. Chem. Res. 1995. V. 34. P. 4577. https://doi.org/10.1021/ie00039a053 https://www. .chem.msu.su/cgi-bin/tkv.pl?show= welcom.html
  25. Kelly J.T., Wexler A.S. // J. Geophys. Res. 2005. V. 110. № D11201. https://doi.org/10.1029/2004JD005583
  26. Dorofeeva O.V., Ryzhova O.N. // J. Chem. Thermodyn. 2009. V. 41. № 4. P. 433. https://doi.org/10.1016/j.jct.2008.12.001
  27. Varma A., Mukasyan A.S., Rogachev A.S. et al. // Chem. Rev. 2016. V. 116. № 23. P. 14493. https://doi.org/10.1021/acs.chemrev.6b00279
  28. Zhang C., Pei Y., Zhao L. et al. // J. Eur. Ceram. Soc. 2014. V. 34. № 1. P. 63. https://doi.org/10.1016/j.jeurceramsoc.2013.08.001
  29. Wu M., Hsiao K., Lu H. // Mater. Chem. Phys. 2015. V. 162. P. 386. http://doi.org/10.1016/j.matchemphys.2015.06.003
  30. Makula P., Pacia M., Macyk W. // J. Phys. Chem. Lett. 2018. V. 9. № 23. P. 6814. https://doi.org/10.1021/acs.jpclett.8b02892

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Digital photographs of products formed at the heating stage of the NOP: HNP (a), KNP (b) and PNP (c). The inserts show photos of the final powders

Download (284KB)
3. Fig. 2. Temperature dependence of the InGaMgO4 heat capacity: 1 — DSC data; 2 — calculated curve (equation (5))

Download (89KB)
4. Fig. 3. X-ray images of HNP evaporation products before and after their annealing in air at 1300°C

Download (88KB)
5. Fig. 4. X-ray images of the products of evaporation of CNP (a) and PNP (b) before and after their annealing in air at temperatures from 400 to 1200°C

Download (178KB)
6. Fig. 5. SEM images of InGaMgO4 powder annealed in air at 1200°C for 4 hours: a — CNG; b — PNP

Download (405KB)
7. Fig. 6. Raman spectrum of InGaMgO4 measured at room temperature

Download (75KB)
8. Fig. 7. The spectrum of diffuse reflection of InGaMgO4 in the UV and visible regions. The box shows a graph of the dependence (F(R) hv)2 of hv, used to evaluate Eg

Download (86KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».