Влияние положения заместителей на давление насыщенного пара тетрафторзамещенных фталоцианинов цинка

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Настоящая работа посвящена исследованию влияния положения фтор-заместителей в молекулах тетрафторзамещенных фталоцианинов цинка на давление их насыщенного пара. Для этого температурная зависимость давления насыщенного пара фталоцианинов цинка с фтор-заместителями в периферийном (ZnPcF4-p) и непериферийном (ZnPcF4-np) положении фталоцианинового кольца была изучена методом Кнудсена с масс-спектрометрической регистрацией состава газовой фазы и рассчитаны термодинамические параметры парообразования. Проведено сравнение полученных данных для ZnPcF4-p и ZnPcF4-np с незамещенным и гексадекафторзамещенным фталоцианинами цинка с точки зрения анализа межмолекулярных взаимодействий в кристаллах данных соединений. Показано, что тетрафторзамещенные фталоцианины обладают более высоким давлением пара по сравнению с их незамещенным (ZnPc) и гексадекафторзамещенным (ZnPcF16) производными. При этом энтальпия сублимации увеличивается в ряду ZnPcF4-p < ZnPcF4-np < ZnPc < ZnPcF16.

Об авторах

Д. В. Бонегардт

Институт неорганической химии им. А.В. Николаева СО РАН

Email: basova@niic.nsc.ru
Россия, 630090, Новосибирск, пр-т Академика Лаврентьева, 3

С. В. Трубин

Институт неорганической химии им. А.В. Николаева СО РАН

Email: basova@niic.nsc.ru
Россия, 630090, Новосибирск, пр-т Академика Лаврентьева, 3

А. С. Сухих

Институт неорганической химии им. А.В. Николаева СО РАН

Email: basova@niic.nsc.ru
Россия, 630090, Новосибирск, пр-т Академика Лаврентьева, 3

Д. Д. Клямер

Институт неорганической химии им. А.В. Николаева СО РАН

Email: basova@niic.nsc.ru
Россия, 630090, Новосибирск, пр-т Академика Лаврентьева, 3

Т. В. Басова

Институт неорганической химии им. А.В. Николаева СО РАН

Автор, ответственный за переписку.
Email: basova@niic.nsc.ru
Россия, 630090, Новосибирск, пр-т Академика Лаврентьева, 3

Список литературы

  1. Wang H., Wu Q., Cheng L. et al. // Energy Storage Mater. 2022. V. 52. P. 495.https://doi.org/10.1016/J.ENSM.2022.08.022
  2. Kumar A., Kumar Vashistha V., Kumar Das D. // Coord. Chem. Rev. 2021. V. 431. P. 213678. https://doi.org/10.1016/J.CCR.2020.213678
  3. Nyokong T. // Coord. Chem. Rev. 2007. V. 251. № 13–14 Spec. Iss. P. 1707. https://doi.org/10.1016/j.ccr.2006.11.011
  4. Gorbunova Y.G., Martynov A.G., Birin K.P. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 2. P. 202. https://doi.org/10.1134/S0036023621020091
  5. Jiang H., Hu P., Ye J. et al. // Adv. Mater. 2017. V. 29. № 10. P. 1605053. https://doi.org/10.1002/adma.201605053
  6. Brinkmann H., Kelting C., Makarov S. et al. // Phys. Status Solidi: Appl. Mater. Sci. 2008. V. 205. № 3. P. 409. https://doi.org/10.1002/pssa.200723391
  7. Gupta H., Mahajan A., Bedi R.K. // Indian J. Pure Appl. Phys. 2008. V. 46. № 6. P. 435.
  8. Raveendra Kiran M., Ulla H., Satyanarayan M.N. et al. // Opt. Mater. (Amst). 2019. V. 96. P. 109348. https://doi.org/10.1016/j.optmat.2019.109348
  9. Ilgün C., Sevim A.M., Çakar S. et al. // Sol. Energy. 2021. V. 218. P. 169. https://doi.org/10.1016/J.SOLENER.2021.02.042
  10. Acikbas Y., Erdogan M., Capan R. et al. // Optik (Stuttg). 2021. V. 245. P. 167661. https://doi.org/10.1016/j.ijleo.2021.167661
  11. Bengasi G., Meunier-Prest R., Baba K. et al. // Adv. Electron. Mater. 2020. V. 6. № 12. P. 1. https://doi.org/10.1002/aelm.202000812
  12. Klyamer D., Bonegardt D., Krasnov P. et al. // Thin Solid Films. 2022. V. 754. P. 139301. https://doi.org/10.1016/J.TSF.2022.139301
  13. Curry J., W. Shaw Jr. R. // J. Phys. Chem. 1965. V. 69. № 1. P. 344. https://doi.org/10.1021/j100885a505
  14. Bonderman P.D., Cater D.E., Bennett E.W. // J. Chem. Eng. Data. 2002. V. 15. № 3. P. 396. https://doi.org/10.1021/je60046a004
  15. Yase K., Takahashi Y., NorihikoArakato et al. // Jpn. J. Appl. Phys. 1995. V. 34. P. 636. https://doi.org/10.1143/JJAP.34.636
  16. Шаулов Ю.Х., Лопаткина И.Л., Кирюхин И.А. et al. // Журн. физ. химии. 1975. Т. 49. № 1. С. 252.
  17. Шаулов Ю.Х., Приселков Ю.А., Лопаткина И.Л., Маркова И.Я. // Журн. физ. химии. 1972. Т. 46. № 4. С. 857.
  18. Semyannikov P.P., Basova T.V., Grankin V.M. et al. // J. Porphyr. Phthalocyanines. 2000. V. 4. № 3. P. 271. https://doi.org/10.1002/(SICI)1099-1409(200004/0-5)4:3<271::AID-JPP205>3.3.CO;2-W
  19. Plyashkevich V., Basova T., Semyannikov P. et al. // Thermochim. Acta. 2010. V. 501. № 1–2. P. 108. https://doi.org/10.1016/J.TCA.2010.01.019
  20. Kol’tsov E., Basova T., Semyannikov P. et al. // Mater. Chem. Phys. 2004. V. 86. № 1. P. 222. https://doi.org/10.1016/j.matchemphys.2004.03.007
  21. Semyannikov P., Basova T., Trubin S. et al. // J. Porphyr. Phthalocyanines. 2006. V. 10. № 8. P. 1034. https://doi.org/10.1142/S1088424606000387
  22. Basova T., Semyannikov P., Plyashkevich V. et al. // Crit. Rev. Solid State Mater. Sci. 2009. V. 34. № 3–4. P. 180. https://doi.org/10.1080/10408430903245377
  23. Семянников П.П., Басова Т.В., Трубин С.В. и др. // Журн. физ. химии. 2008. Т. 82. № 2. С. 221.
  24. Басова Т.В., Семянников П.П., Игуменов И.К. // Давление насыщенного пара фталоцианинов. СПб., 2007. С. 136.
  25. Klyamer D.D., Sukhikh A.S., Trubin S.V. et al. // Cryst. Growth & Des. 2020. V. 20. № 2. P. 1016. https://doi.org/10.1021/acs.cgd.9b01350
  26. Erdoǧmus A., Nyokong T. // J. Mol. Struct. 2010. V. 977. № 1–3. P. 26. https://doi.org/10.1016/J.MOLSTRUC.2010.04.048
  27. Гранкин В.М., Семянников П.П. // Приборы и техника эксперимента 1991. Т. 4. С. 129.
  28. Lopatin S.I., Shugurov S.M., Tyurnina Z.G. et al. // Glas. Phys. Chem. 2021. V. 47. № 1. P. 38. https://doi.org/10.1134/S1087659621010077
  29. Spackman P.R., Turner M.J., McKinnon J.J. et al. // J. Appl. Crystallogr. 2021. V. 54. P. 1006. https://doi.org/10.1107/S1600576721002910
  30. Mackenzie C.F., Spackman P.R., Jayatilaka D. et al. // IUCrJ. 2017. V. 4. P. 575. https://doi.org/10.1107/S205225251700848X
  31. Scheidt W.R., Dow W. // J. Am. Chem. Soc. 1977. V. 99. № 4. P. 1101. https://doi.org/10.1021/ja00446a021
  32. Bonegardt D., Klyamer D., Sukhikh A. et al. // 2021. V. 9. № 6. P. 137. https://doi.org/10.3390/chemosensors9060137
  33. Klyamer D.D., Sukhikh A.S., Gromilov S.A. et al. // Macroheterocycles. 2018. V. 11. № 3. P. 304. https://doi.org/10.6060/mhc180794b
  34. Jiang H., Ye J., Hu P. et al. // Sci. Rep. 2014. V. 4. P. 1. https://doi.org/10.1038/srep07573
  35. Erk P. // CCDC 112723: Experimental Crystal Structure Determination. 2004. https://doi.org/10.5517/cc3s97d
  36. Ballirano P., Caminiti R., Ercolani C. et al. // J. Am. Chem. Soc. 1998. V. 120. № 49. P. 12798. https://doi.org/10.1021/ja973815p
  37. Pugachev A.D., Tkachev V.V., Aldoshin S.M. et al. // Russ. J. Gen. Chem. 2021. V. 91. № 7. P. 1297. https://doi.org/10.1134/S1070363221070069

Дополнительные файлы


© Д.В. Бонегардт, С.В. Трубин, А.С. Сухих, Д.Д. Клямер, Т.В. Басова, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах