Синтез и термическая устойчивость ацетилацетоната марганца(III)

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Рассмотрена зависимость устойчивости модификаций Mn(C5H7O2)3 от свойств растворителя, выбранного для перекристаллизации. Малополярные растворители с небольшой величиной диэлектрической проницаемости способствуют усилению межмолекулярных взаимодействий, что приводит к образованию модификации β-Mn(C5H7O2)3 при синтезе Mn(C5H7O2)3 из растворов в хлороформе. Использование смесей хлороформа с петролейным эфиром позволяет регулировать пересыщение, скорость образования и роста зародышей фаз за счет испарения хлороформа в изотермических условиях. Использование полярных растворителей для перекристаллизации способствует образованию γ-Mn(C5H7O2)3. Методами рентгенофазового анализа, ИК-спектроскопии, термогравиметрического и масс-спектрального анализа, дифференциальной сканирующей калориметрии определен состав продуктов термического разложения β-Mn(C5H7O2)3 в сухой инертной атмосфере. В интервале температур 140–240°С β-Mn(C5H7O2)3 плавится с образованием Mn(C5H7O2)2. При температурах 500–550°С Mn(C5H7O2)2 разлагается до смеси MnO, Mn3O4, Mn2O3 и углерода.

Об авторах

Р. С. Эшмаков

Московский государственный университет им. М.В. Ломоносова

Email: rodion.eshmakov@chemistry.msu.ru
Россия, 119991, Москва, Ленинские горы, 1

И. В. Пролубщиков

Московский государственный университет им. М.В. Ломоносова

Email: rodion.eshmakov@chemistry.msu.ru
Россия, 119991, Москва, Ленинские горы, 1

В. П. Зломанов

Московский государственный университет им. М.В. Ломоносова

Автор, ответственный за переписку.
Email: rodion.eshmakov@chemistry.msu.ru
Россия, 119991, Москва, Ленинские горы, 1

Список литературы

  1. Snider B.B. // Encyclopedia of Reagents for Organic Synthesis. John Wiley & Sons Ltd, 2001. https://doi.org/ /10.1002/047084289X.rm022
  2. Ban H.T., Kase T., Murata M. // J. Polym. Sci. A1. 2001. V. 39. № 21. P. 3733. https://doi.org/10.1002/pola.10021
  3. Gorkum R., Bouwman E., Reedijk J. // Inorg. Chem. 2004. V. 43. № 8. P. 2456. https://doi.org/10.1021/ic0354217
  4. Sleightholme A.E.S., Shinkle A.A., Liu Q. et al. // J. Power Sources. 2011. V. 196. № 13. P. 5742. https://doi.org/10.1016/j.jpowsour.2011.02.020
  5. Park Y.J., Kim J.G., Kim M.K. et al. // Solid State Ionics. 2000. V. 130. № 3. P. 203. https://doi.org/https://doi.org/10.1016/S0167-2738(00)-00551-8
  6. Fackler J.P., Avdeef A. // Inorg. Chem. 1974. V. 13. № 8. P. 1864. https://doi.org/10.1021/ic50138a016
  7. Stults B.R., Marianelli R.S., Day V.W. // Inorg. Chem. 1979. V. 18. № 7. P. 1853. https://doi.org/10.1021/ic50197a028
  8. Geremia S., Demitri N. // J. Chem. Educ. 2005. V. 82. № 3. P. 460. https://doi.org/10.1021/ed082p460
  9. Arslan E., Lalancette R.A., Bernal I. // Struct. Chem. 2017. V. 28. № 1. P. 201. https://doi.org/10.1007/s11224-016-0864-0
  10. Bhattacharjee M.N., Chaudhuri M.K., Khathing D.T. // J. Chem. Soc., Dalton Trans. 1982. № 3. P. 669. https://doi.org/10.1039/DT9820000669
  11. Kunstle G. Patent FRG. №2420775 A1. 1974
  12. Charles R.G., Bryant B.E. // Inorg. Synth. 1963. P. 183. https://doi.org/10.1002/9780470132388.ch49
  13. Cartledge G.H. Patent USA № 2556316. 1951.
  14. Linke W., Zirker G. Pat FRG № 1039056B. 1957.
  15. Gach F. // C.R. Acad. Sci. Ser. IIc: Chim. 1900. P. 98.
  16. Грачев В.И., Носков С.В., Филатов И.Ю. Пат. РФ № 2277529C1 // Бюлл. 16 от 10.06.2006.
  17. Matthews J.C., Wood L.L. Pat. USA № 474464. 1969.
  18. Siddiqi M.A., Siddiqui R.A., Atakan B. // Surf Coat. Tech. 2007. V. 201. № 22. P. 9055. https://doi.org/10.1016/j.surfcoat.2007.04.036
  19. McNeill I.C., Liggat J.J. // Polym. Degrad. Stabil. 1992. V. 37. № 1. P. 25. https://doi.org/10.1016/0141-3910(92)90088-M
  20. Babich I.V., Davydenko L.A., Sharanda L.F. et al. // Thermochim. Acta. 2007. V. 456. № 2. P. 145. https://doi.org/https://doi.org/10.1016/j.tca.2007.02.010
  21. Reichert C., Bancroft G.M., Westmore J.B. // Can. J. Chem. 1970. V. 48. № 9. P. 1362. https://doi.org/10.1139/v70-225
  22. Macdonald C.G., Shannon J.S. // Aust. J. Chem. 1966. V. 19. № 9. P. 1545. https://doi.org/10.1071/CH9661545
  23. Новый справочник химика и технолога / Под ред. Москвина А.В. СПб., 2006. 456 с.
  24. Zlomanov V.P., Eshmakov R.S., Prolubshchikov I.V. // Condensed Matter and Interphases. 2022. V. 24. № 1. P. 29. [Зломанов В.П., Эшмаков Р.С., Пролубщи-ков И.В. // Конденсированные среды и межфазные границы. 2022. Т. 24. № 1. С. 29.] https://doi.org/10.17308/kcmf.2022.24/000
  25. Тарасевич Б.Н. // ИК-спектры основных классов органических соединений. Справочные материалы. М., 2012. 55 с.
  26. Diaz-Acosta I., Baker J., Hinton J.F. et al. // Spectrochim. Acta, Part A. 2003. V. 59. № 2. P. 363. https://doi.org/10.1016/S1386-1425(02)00166-X
  27. Lawson K.E. // Spectrochim. Acta. 1961. V. 17. № 3. P. 248. https://doi.org/10.1016/0371-1951(61)80071-4
  28. Pinchas S., Silver B.L., Laulicht I. // J. Chem. Phys. 1967. V. 46. № 4. P. 1506. https://doi.org/10.1063/1.1840881
  29. Алиханян А.С., Малкерова И.П., Севастьянов В.Г. и др. // Высокочистые вещества. 1987. Т. 3. С. 112.
  30. Semyannikov P.P., Igumenov I.K., Trubin S.V., Asanov I.P. // J. Phys. IV. France. 2001. V. 11. P. 995.
  31. Jarosch D. // Miner. Petrol. 1987. V. 37. № 1. P. 15. https://doi.org/10.1007/BF01163155
  32. Hase W. // Phys. Status Solidi B. 1963. V. 3. № 12. P. K446. https://doi.org//10.1002/pssb.19630031225
  33. Jay A.H., Andrews K.W. // J. Iron Steel I. 1945. V. 152. № 2. P. 15.
  34. Hassel O., Mark H. // Z. Phys. 1924. V. 25. № 1. P. 317.
  35. Shibata S., Onuma S., Inoue H. // Inorg. Chem. 1985. V. 24. № 11. P. 1723. https://doi.org/10.1021/ic00205a028
  36. Tran M. van, Ha A.T., Le P.M.L. // J. Nanomater. 2015. V. 16. № 1. https://doi.org/10.1155/2015/609273
  37. Lemmon E.W., McLinden M.O., Friend D.G. et al. // National Institute of Standards and Technology. Gaithersburg, 2011.
  38. Wu Z., Yu K., Huang Y. et al. // Chem. Cent. J. 2007. V. 1. № 1. P. 8. https://doi.org/10.1186/1752-153X-1-8
  39. Sharrouf M., Awad R., Roumié M. et al. // Mater. Sci. Appl. 2015. V. 6. № 10. P. 850.
  40. Zheng M., Zhang H., Gong X. et al. // Nanoscale Res. Lett. 2013. V. 8. № 1. P. 166. https://doi.org/10.1186/1556-276X-8-16

Дополнительные файлы


© Р.С. Эшмаков, И.В. Пролубщиков, В.П. Зломанов, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах