Synthesis and Thermal Stability of Manganese(III) Acetylacetonate

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The dependence of the stability of Mn(C5H7O2)3 modifications on the properties of the solvent chosen for recrystallization is considered. Low-polarity solvents with a low dielectric permittivity enhance intermolecular interactions, which leads to the formation of the β-Mn(C5H7O2)3 modification during the synthesis of Mn(C5H7O2)3 from chloroform solutions. The use of mixtures of chloroform with petroleum ether makes it possible to control supersaturation, the rate of formation, and growth of phase nuclei due to the evaporation of chloroform under isothermal conditions. The use of polar solvents for recrystallization favors the formation of γ-Mn(C5H7O2)3. The composition of the thermal decomposition products of β‑Mn(C5H7O2)3 in a dry inert atmosphere has been determined by X-ray powder diffraction, IR spectroscopy, thermogravimetric and mass spectral analysis, and differential scanning calorimetry. In the temperature range 140–240°C, β-Mn(C5H7O2)3 melts to form Mn(C5H7O2)2. At temperatures of 500–550°С, Mn(C5H7O2)2 decomposes to a mixture of MnO, Mn3O4, Mn2O3, and carbon.

Sobre autores

R. Eshmakov

Moscow State University

Email: rodion.eshmakov@chemistry.msu.ru
119991, Moscow, Russia

I. Prolubshchikov

Moscow State University

Email: rodion.eshmakov@chemistry.msu.ru
119991, Moscow, Russia

V. Zlomanov

Moscow State University

Autor responsável pela correspondência
Email: rodion.eshmakov@chemistry.msu.ru
119991, Moscow, Russia

Bibliografia

  1. Snider B.B. // Encyclopedia of Reagents for Organic Synthesis. John Wiley & Sons Ltd, 2001. https://doi.org/ /10.1002/047084289X.rm022
  2. Ban H.T., Kase T., Murata M. // J. Polym. Sci. A1. 2001. V. 39. № 21. P. 3733. https://doi.org/10.1002/pola.10021
  3. Gorkum R., Bouwman E., Reedijk J. // Inorg. Chem. 2004. V. 43. № 8. P. 2456. https://doi.org/10.1021/ic0354217
  4. Sleightholme A.E.S., Shinkle A.A., Liu Q. et al. // J. Power Sources. 2011. V. 196. № 13. P. 5742. https://doi.org/10.1016/j.jpowsour.2011.02.020
  5. Park Y.J., Kim J.G., Kim M.K. et al. // Solid State Ionics. 2000. V. 130. № 3. P. 203. https://doi.org/https://doi.org/10.1016/S0167-2738(00)-00551-8
  6. Fackler J.P., Avdeef A. // Inorg. Chem. 1974. V. 13. № 8. P. 1864. https://doi.org/10.1021/ic50138a016
  7. Stults B.R., Marianelli R.S., Day V.W. // Inorg. Chem. 1979. V. 18. № 7. P. 1853. https://doi.org/10.1021/ic50197a028
  8. Geremia S., Demitri N. // J. Chem. Educ. 2005. V. 82. № 3. P. 460. https://doi.org/10.1021/ed082p460
  9. Arslan E., Lalancette R.A., Bernal I. // Struct. Chem. 2017. V. 28. № 1. P. 201. https://doi.org/10.1007/s11224-016-0864-0
  10. Bhattacharjee M.N., Chaudhuri M.K., Khathing D.T. // J. Chem. Soc., Dalton Trans. 1982. № 3. P. 669. https://doi.org/10.1039/DT9820000669
  11. Kunstle G. Patent FRG. №2420775 A1. 1974
  12. Charles R.G., Bryant B.E. // Inorg. Synth. 1963. P. 183. https://doi.org/10.1002/9780470132388.ch49
  13. Cartledge G.H. Patent USA № 2556316. 1951.
  14. Linke W., Zirker G. Pat FRG № 1039056B. 1957.
  15. Gach F. // C.R. Acad. Sci. Ser. IIc: Chim. 1900. P. 98.
  16. Грачев В.И., Носков С.В., Филатов И.Ю. Пат. РФ № 2277529C1 // Бюлл. 16 от 10.06.2006.
  17. Matthews J.C., Wood L.L. Pat. USA № 474464. 1969.
  18. Siddiqi M.A., Siddiqui R.A., Atakan B. // Surf Coat. Tech. 2007. V. 201. № 22. P. 9055. https://doi.org/10.1016/j.surfcoat.2007.04.036
  19. McNeill I.C., Liggat J.J. // Polym. Degrad. Stabil. 1992. V. 37. № 1. P. 25. https://doi.org/10.1016/0141-3910(92)90088-M
  20. Babich I.V., Davydenko L.A., Sharanda L.F. et al. // Thermochim. Acta. 2007. V. 456. № 2. P. 145. https://doi.org/https://doi.org/10.1016/j.tca.2007.02.010
  21. Reichert C., Bancroft G.M., Westmore J.B. // Can. J. Chem. 1970. V. 48. № 9. P. 1362. https://doi.org/10.1139/v70-225
  22. Macdonald C.G., Shannon J.S. // Aust. J. Chem. 1966. V. 19. № 9. P. 1545. https://doi.org/10.1071/CH9661545
  23. Новый справочник химика и технолога / Под ред. Москвина А.В. СПб., 2006. 456 с.
  24. Zlomanov V.P., Eshmakov R.S., Prolubshchikov I.V. // Condensed Matter and Interphases. 2022. V. 24. № 1. P. 29. [Зломанов В.П., Эшмаков Р.С., Пролубщи-ков И.В. // Конденсированные среды и межфазные границы. 2022. Т. 24. № 1. С. 29.] https://doi.org/10.17308/kcmf.2022.24/000
  25. Тарасевич Б.Н. // ИК-спектры основных классов органических соединений. Справочные материалы. М., 2012. 55 с.
  26. Diaz-Acosta I., Baker J., Hinton J.F. et al. // Spectrochim. Acta, Part A. 2003. V. 59. № 2. P. 363. https://doi.org/10.1016/S1386-1425(02)00166-X
  27. Lawson K.E. // Spectrochim. Acta. 1961. V. 17. № 3. P. 248. https://doi.org/10.1016/0371-1951(61)80071-4
  28. Pinchas S., Silver B.L., Laulicht I. // J. Chem. Phys. 1967. V. 46. № 4. P. 1506. https://doi.org/10.1063/1.1840881
  29. Алиханян А.С., Малкерова И.П., Севастьянов В.Г. и др. // Высокочистые вещества. 1987. Т. 3. С. 112.
  30. Semyannikov P.P., Igumenov I.K., Trubin S.V., Asanov I.P. // J. Phys. IV. France. 2001. V. 11. P. 995.
  31. Jarosch D. // Miner. Petrol. 1987. V. 37. № 1. P. 15. https://doi.org/10.1007/BF01163155
  32. Hase W. // Phys. Status Solidi B. 1963. V. 3. № 12. P. K446. https://doi.org//10.1002/pssb.19630031225
  33. Jay A.H., Andrews K.W. // J. Iron Steel I. 1945. V. 152. № 2. P. 15.
  34. Hassel O., Mark H. // Z. Phys. 1924. V. 25. № 1. P. 317.
  35. Shibata S., Onuma S., Inoue H. // Inorg. Chem. 1985. V. 24. № 11. P. 1723. https://doi.org/10.1021/ic00205a028
  36. Tran M. van, Ha A.T., Le P.M.L. // J. Nanomater. 2015. V. 16. № 1. https://doi.org/10.1155/2015/609273
  37. Lemmon E.W., McLinden M.O., Friend D.G. et al. // National Institute of Standards and Technology. Gaithersburg, 2011.
  38. Wu Z., Yu K., Huang Y. et al. // Chem. Cent. J. 2007. V. 1. № 1. P. 8. https://doi.org/10.1186/1752-153X-1-8
  39. Sharrouf M., Awad R., Roumié M. et al. // Mater. Sci. Appl. 2015. V. 6. № 10. P. 850.
  40. Zheng M., Zhang H., Gong X. et al. // Nanoscale Res. Lett. 2013. V. 8. № 1. P. 166. https://doi.org/10.1186/1556-276X-8-16

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (332KB)
3.

Baixar (133KB)
4.

Baixar (338KB)
5.

Baixar (446KB)
6.

Baixar (636KB)

Declaração de direitos autorais © Р.С. Эшмаков, И.В. Пролубщиков, В.П. Зломанов, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies