Формирование тонкопленочных композиционных структур CdxPb1 – xS/CdyS при химическом осаждении

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Химическим осаждением получены тонкие пленки твердых растворов замещения CdxPb1 – xS (0 ≤ x ≤ 0.094) кубической структуры B1 (пр. гр. Fm\(\overline 3 m\)) и исследованы с помощью рентгеновской дифракции, сканирующей электронной микроскопии, элементного EDX-анализа и КР-спектроскопии. Показано, что при достижении некоторой критической концентрации сульфата кадмия в реакционной смеси (0.1 моль/л) пленки формируются с участием двух самостоятельных фаз: твердого раствора замещения CdxPb1 – xS и гексагонального сульфида кадмия CdyS со структурой В4 (пр. гр. P63mc). Предложенный метод и условия синтеза эффективны для получения гетероструктур в системе CdS–PbS при осаждении в одну стадию.

Об авторах

А. Д. Селянина

Уральский федеральный университет им. первого Президента России Б.Н. Ельцина

Email: n-kutyavina@mail.ru
Россия, 620002, Екатеринбург, ул. Мира, 19

Л. Н. Маскаева

Уральский федеральный университет им. первого Президента России Б.Н. Ельцина; Уральский институт Государственной противопожарной службы МЧС России

Email: n-kutyavina@mail.ru
Россия, 620002, Екатеринбург, ул. Мира, 19; Россия, 620002, Екатеринбург, ул. Мира, 22

В. И. Воронин

Институт физики металлов им. М.Н. Михеева УрО РАН

Email: n-kutyavina@mail.ru
Россия, 620108, Екатеринбург, ул. Софьи Ковалевской, 18

И. А. Анохина

Институт высокотемпературной электрохимии УрО РАН

Email: n-kutyavina@mail.ru
Россия, 620137, Екатеринбург, ул. Академическая, 20

В. Ф. Марков

Уральский федеральный университет им. первого Президента России Б.Н. Ельцина; Уральский институт Государственной противопожарной службы МЧС России

Автор, ответственный за переписку.
Email: n-kutyavina@mail.ru
Россия, 620002, Екатеринбург, ул. Мира, 19; Россия, 620002, Екатеринбург, ул. Мира, 22

Список литературы

  1. Маскаева Л.Н., Марков В.Ф., Порхачев М.Ю. и др. // Пожаровзрывобезопасность. 2013. Т. 24. № 9. С. 67.
  2. Pentia E., Draghici V., Sarau G. et al. // J. Electrochem. Soc. 2004. V. 151. № 11. P. G729. https://doi.org/10.1149/1.1800673
  3. Thangavel S., Ganesan S., Saravanan K. // Thin Solid Films. 2012. V. 520. № 16. P. 5206. https://doi.org/10.1016/j.tsf.2012.03.114
  4. Touati B., Gassoumi A., Guasch C. et al. // Mater. Sci. Semicond. Process. 2017. V. 67. P. 20. https://doi.org/10.1016/j.mssp.2017.05.004
  5. Ounissi A., Ouddai N., Achour S. // EPJ. Appl. Phys. 2007. V. 37. № 3. P. 241. https://doi.org/10.1051/epjap:2007034
  6. Suryavanshi K.E., Dhake R.B., Patil A.M. et al. // Optik. 2020. P. 165008. https://doi.org/10.1016/j.ijleo.2020.165008
  7. Sharma S., Venkata D.R.A., Jayarambabu N. et al. // Mater. Today: Proceedings. 2019. V. 26. № 1. P. 162. https://doi.org/10.1016/j.matpr.2019.10.155
  8. Bezdetnova A.E., Markov V.F., Maskaeva L.N. et al. // J. Anal. Chem. 2019. V. 74. № 12. P. 1256. [Бездетнова А.Е., Марков В.Ф., Маскаева Л.Н. и др. // Журн. аналит. химии. 2019. Т. 74. № 12. С. 953.] https://doi.org/10.1134/S1061934819120025
  9. Maskaeva L.N., Pozdin A.V., Markov V.F. et al. // Semiconductors. 2020. V. 54. P. 1567. [Маскаева Л.Н., Поздин А.В., Марков В.Ф. и др. // Физика и техника полупроводников. 2020. Т. 54. № 12. С. 1309.] https://doi.org/10.1134/S1063782620120209
  10. Kutyavina A.D., Maskaeva L.N., Voronin V.I. et al. // CTA. V. 8. № 2. P. 20218210. https://doi.org/10.15826/chimtech.2021.8.2.10
  11. Шелимова Л.Е. Диаграммы состояния в полупроводниковом материаловедении (системы на основе халькогенидов Si, Ge, Sn, Pb). М.: Наука, 1991. 256 с.
  12. Maskaeva L.N., Kutyavina A.D., Markov V.F. et al. // Russ. J. Gen. Chem. Т. 88. № 2. P. 295. [Маскаева Л.Н., Кутявина А.Д., Марков В.Ф. и др. // Журн. общ. химии. 2018. Т. 88. № 2. С. 319.] https://doi.org/10.1134/S1070363218020172
  13. Марков В.Ф., Маскаева Л.Н., Иванов П.Н. Гидрохимическое осаждение пленок сульфидов металлов: моделирование и эксперимент. Екатеринбург: УрО РАН, 2006. 218 с.
  14. Маскаева Л.Н., Марков В.Ф., Ваганова И.В. и др. // Бутлеровские сообщения. 2017. Т. 49. № 3. С. 50.
  15. Rabinovich E., Wachtel E., Hodes G. // Thin Solid Films. 2008. V. 517. № 2. P. 737. https://doi.org/10.1016/j.tsf.2008.08.162
  16. Rietveld H.M. // J. Appl. Crystallogr. 1969. V. 2. № 2. P. 65. https://doi.org/10.1107/S0021889869006558
  17. Bush D.L., Post J.E. // Rev. Miner. 1990. V. 20. P. 369. https://doi.org/10.1180/claymin.1990.025.4.12
  18. Rodrigues–Carvajal J. // Physica B. 1993. V. 192. P. 55. 10.1016/0921-4526(93)90108-I' target='_blank'>https://doi.org/doi: 10.1016/0921-4526(93)90108-I
  19. Williamson G.K., Hall W.H. // Acta Metallurgica. 1953. V. 1. № 1. P. 22. https://doi.org/10.1016/0001-6160(53)90006-6
  20. Corll J.A. // J. Appl. Phys. 1964. V. 35. P. 3032. https://doi.org/10.1063/1.1713151
  21. Kobayashi T., Susa K., Taniguchi S. // J. Phys. Chem. Solids. 1979. V. 40. P. 781. https://doi.org/10.1016/0022-3697(79)90160-4
  22. Susa K., Kobayashi T., Taniguchi S. // J. Solid State Chem. 1980. V. 33. № 2. P. 197. https://doi.org/10.1016/0022-4596(80)90120-6
  23. Guglielmi M., Martucci A., Fick J. et al. // J. Sol-Gel Sci. Technol. 1998. V. 11. № 3. P. 229. https://doi.org/10.1023/A:1008650027769
  24. Forostyanaya N.A., Maskaeva L.N., Markov V.F. // Russ. J. Gen. Chem. 2015. V. 85. № 11. P. 2513. [Форостяная Н.А., Маскаева Л.Н., Марков В.Ф. // Журн. общ. химии. 2015. Т. 85. № 11. С. 1769.] https://doi.org/10.1134/S1070363215110031
  25. Kul M. // Anadolu Univ. J. Sci. Technol. 2019. V. 7. P. 46. https://doi.org/10.20290/aubtdb.465445
  26. Abu-Hariri A., Budniak A.K., Horani F. et al. // RSC Advances. 2021. V. 11. P. 30560. https://doi.org/10.1039/D1RA04402H
  27. Ovsyannikov S.V., Shchennikov V.V., Cantarero A. et al. // Mater. Sci. Eng. A. 2007. V. 462. № 1–2. P. 422. https://doi.org/10.1016/j.msea.2006.05.175
  28. Perez R.G., Tellez G.H., Rosas U.P. et al. // JMSE-A. 2013. № 1. P. 1. https://doi.org/10.17265/2161-6213/2013.01.001
  29. Batonneau Y., Bremard C., Laureyns J. et al. // J. Raman Spectrosc. 2000. V. 31. № 12. P. 1113. https://doi.org/10.1002/1097-4555(200012)31:12<1113:: AID-JRS653>3.0.CO;2-E
  30. Abdi A., Titova L.V., Smith L.M. et al. // Appl. Phys. Lett. 2006. V. 88. P. 043118. https://doi.org/10.1063/1.2168507
  31. Oladeji I.O., Chow L., Liu J.R. et al. // Thin Solid Films. 2000. V. 359. № 2. P. 154. https://doi.org/10.1016/S0040-6090(99)00747-6
  32. Milekhina A.G., Sveshnikova L.L., Repinsky S.M. et al. // Thin Solid Films. 2002. V. 422. № 1–2. P. 200. https://doi.org/10.1016/S0040-6090(02)00991-4
  33. Maskaeva L.N., Markov V.F., Voronin V.I. et al. // Thin Solid Films. 2004. V. 461. № 2. P. 325. https://doi.org/10.1016/j.tsf.2004.02.035

Дополнительные файлы


© А.Д. Селянина, Л.Н. Маскаева, В.И. Воронин, И.А. Анохина, В.Ф. Марков, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах