Chemical Deposition of CdxPb1 – xS/CdyS Thin-Film Composite Structures

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Thin films of CdxPb1 – xS (0 ≤ x ≤ 0.094) substitutional solid solutions of cubic structure B1 (space group Fm
) were prepared by chemical deposition and characterized by X-ray diffraction, scanning electron microscopy, EDX elemental analysis, and Raman spectroscopy. Once the cadmium sulfate concentration in the batch reached some critical value (0.1 mol/L), the films formed involved two autonomous phases: CdxPb1 – xS substitutional solid solutions and hexagonal cadmium sulfide CdyS of structure В4 (space group P63mc). The method and its parameters as proposed are efficient for manufacturing heterostructures in the CdS–PbS system in one-pot deposition.

Sobre autores

A. Selyanina

Ural Federal University Named after First President of Russia B.N. Yeltsin

Email: n-kutyavina@mail.ru
620002, Yekaterinburg, Russia

L. Maskaeva

Ural Federal University Named after First President of Russia B.N. Yeltsin; Ural Institute of State Fire Service, the EMERCOM of Russia

Email: n-kutyavina@mail.ru
620002, Yekaterinburg, Russia; 620062, Yekaterinburg, Russia

V. Voronin

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: n-kutyavina@mail.ru
620108, Yekaterinburg, Russia

I. Anokhina

Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences

Email: n-kutyavina@mail.ru
620137, Yekaterinburg, Russia

V. Markov

Ural Federal University Named after First President of Russia B.N. Yeltsin; Ural Institute of State Fire Service, the EMERCOM of Russia

Autor responsável pela correspondência
Email: n-kutyavina@mail.ru
620002, Yekaterinburg, Russia; 620062, Yekaterinburg, Russia

Bibliografia

  1. Маскаева Л.Н., Марков В.Ф., Порхачев М.Ю. и др. // Пожаровзрывобезопасность. 2013. Т. 24. № 9. С. 67.
  2. Pentia E., Draghici V., Sarau G. et al. // J. Electrochem. Soc. 2004. V. 151. № 11. P. G729. https://doi.org/10.1149/1.1800673
  3. Thangavel S., Ganesan S., Saravanan K. // Thin Solid Films. 2012. V. 520. № 16. P. 5206. https://doi.org/10.1016/j.tsf.2012.03.114
  4. Touati B., Gassoumi A., Guasch C. et al. // Mater. Sci. Semicond. Process. 2017. V. 67. P. 20. https://doi.org/10.1016/j.mssp.2017.05.004
  5. Ounissi A., Ouddai N., Achour S. // EPJ. Appl. Phys. 2007. V. 37. № 3. P. 241. https://doi.org/10.1051/epjap:2007034
  6. Suryavanshi K.E., Dhake R.B., Patil A.M. et al. // Optik. 2020. P. 165008. https://doi.org/10.1016/j.ijleo.2020.165008
  7. Sharma S., Venkata D.R.A., Jayarambabu N. et al. // Mater. Today: Proceedings. 2019. V. 26. № 1. P. 162. https://doi.org/10.1016/j.matpr.2019.10.155
  8. Bezdetnova A.E., Markov V.F., Maskaeva L.N. et al. // J. Anal. Chem. 2019. V. 74. № 12. P. 1256. [Бездетнова А.Е., Марков В.Ф., Маскаева Л.Н. и др. // Журн. аналит. химии. 2019. Т. 74. № 12. С. 953.] https://doi.org/10.1134/S1061934819120025
  9. Maskaeva L.N., Pozdin A.V., Markov V.F. et al. // Semiconductors. 2020. V. 54. P. 1567. [Маскаева Л.Н., Поздин А.В., Марков В.Ф. и др. // Физика и техника полупроводников. 2020. Т. 54. № 12. С. 1309.] https://doi.org/10.1134/S1063782620120209
  10. Kutyavina A.D., Maskaeva L.N., Voronin V.I. et al. // CTA. V. 8. № 2. P. 20218210. https://doi.org/10.15826/chimtech.2021.8.2.10
  11. Шелимова Л.Е. Диаграммы состояния в полупроводниковом материаловедении (системы на основе халькогенидов Si, Ge, Sn, Pb). М.: Наука, 1991. 256 с.
  12. Maskaeva L.N., Kutyavina A.D., Markov V.F. et al. // Russ. J. Gen. Chem. Т. 88. № 2. P. 295. [Маскаева Л.Н., Кутявина А.Д., Марков В.Ф. и др. // Журн. общ. химии. 2018. Т. 88. № 2. С. 319.] https://doi.org/10.1134/S1070363218020172
  13. Марков В.Ф., Маскаева Л.Н., Иванов П.Н. Гидрохимическое осаждение пленок сульфидов металлов: моделирование и эксперимент. Екатеринбург: УрО РАН, 2006. 218 с.
  14. Маскаева Л.Н., Марков В.Ф., Ваганова И.В. и др. // Бутлеровские сообщения. 2017. Т. 49. № 3. С. 50.
  15. Rabinovich E., Wachtel E., Hodes G. // Thin Solid Films. 2008. V. 517. № 2. P. 737. https://doi.org/10.1016/j.tsf.2008.08.162
  16. Rietveld H.M. // J. Appl. Crystallogr. 1969. V. 2. № 2. P. 65. https://doi.org/10.1107/S0021889869006558
  17. Bush D.L., Post J.E. // Rev. Miner. 1990. V. 20. P. 369. https://doi.org/10.1180/claymin.1990.025.4.12
  18. Rodrigues–Carvajal J. // Physica B. 1993. V. 192. P. 55. 10.1016/0921-4526(93)90108-I' target='_blank'>https://doi.org/doi: 10.1016/0921-4526(93)90108-I
  19. Williamson G.K., Hall W.H. // Acta Metallurgica. 1953. V. 1. № 1. P. 22. https://doi.org/10.1016/0001-6160(53)90006-6
  20. Corll J.A. // J. Appl. Phys. 1964. V. 35. P. 3032. https://doi.org/10.1063/1.1713151
  21. Kobayashi T., Susa K., Taniguchi S. // J. Phys. Chem. Solids. 1979. V. 40. P. 781. https://doi.org/10.1016/0022-3697(79)90160-4
  22. Susa K., Kobayashi T., Taniguchi S. // J. Solid State Chem. 1980. V. 33. № 2. P. 197. https://doi.org/10.1016/0022-4596(80)90120-6
  23. Guglielmi M., Martucci A., Fick J. et al. // J. Sol-Gel Sci. Technol. 1998. V. 11. № 3. P. 229. https://doi.org/10.1023/A:1008650027769
  24. Forostyanaya N.A., Maskaeva L.N., Markov V.F. // Russ. J. Gen. Chem. 2015. V. 85. № 11. P. 2513. [Форостяная Н.А., Маскаева Л.Н., Марков В.Ф. // Журн. общ. химии. 2015. Т. 85. № 11. С. 1769.] https://doi.org/10.1134/S1070363215110031
  25. Kul M. // Anadolu Univ. J. Sci. Technol. 2019. V. 7. P. 46. https://doi.org/10.20290/aubtdb.465445
  26. Abu-Hariri A., Budniak A.K., Horani F. et al. // RSC Advances. 2021. V. 11. P. 30560. https://doi.org/10.1039/D1RA04402H
  27. Ovsyannikov S.V., Shchennikov V.V., Cantarero A. et al. // Mater. Sci. Eng. A. 2007. V. 462. № 1–2. P. 422. https://doi.org/10.1016/j.msea.2006.05.175
  28. Perez R.G., Tellez G.H., Rosas U.P. et al. // JMSE-A. 2013. № 1. P. 1. https://doi.org/10.17265/2161-6213/2013.01.001
  29. Batonneau Y., Bremard C., Laureyns J. et al. // J. Raman Spectrosc. 2000. V. 31. № 12. P. 1113. https://doi.org/10.1002/1097-4555(200012)31:12<1113:: AID-JRS653>3.0.CO;2-E
  30. Abdi A., Titova L.V., Smith L.M. et al. // Appl. Phys. Lett. 2006. V. 88. P. 043118. https://doi.org/10.1063/1.2168507
  31. Oladeji I.O., Chow L., Liu J.R. et al. // Thin Solid Films. 2000. V. 359. № 2. P. 154. https://doi.org/10.1016/S0040-6090(99)00747-6
  32. Milekhina A.G., Sveshnikova L.L., Repinsky S.M. et al. // Thin Solid Films. 2002. V. 422. № 1–2. P. 200. https://doi.org/10.1016/S0040-6090(02)00991-4
  33. Maskaeva L.N., Markov V.F., Voronin V.I. et al. // Thin Solid Films. 2004. V. 461. № 2. P. 325. https://doi.org/10.1016/j.tsf.2004.02.035

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (268KB)
3.

Baixar (343KB)
4.

Baixar (1MB)
5.

Baixar (1MB)
6.

Baixar (137KB)

Declaração de direitos autorais © А.Д. Селянина, Л.Н. Маскаева, В.И. Воронин, И.А. Анохина, В.Ф. Марков, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies