Effect of Fluorine on Thermoluminescence in LiMgPO4

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Fluorine-doped lithium magnesium phosphate has been studied for the first time. It has been shown that fluorine significantly enhances the intensity of thermally stimulated luminescence. To find the preferred positions of fluorine and structural distortions caused by aliovalent substitution, ab initio calculations have been performed, which demonstrate that fluorine is not included into the (PO4)3– anion; rather, it promotes the formation of clusters simultaneously containing lithium and fluorine ions.

Sobre autores

M. Kalinkin

Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences

Email: kalinkin@ihim.uran.ru
620990, Yekaterinburg, Russia

D. Akulov

Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences

Email: kalinkin@ihim.uran.ru
620990, Yekaterinburg, Russia

O. Gyrdasova

Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences

Email: kalinkin@ihim.uran.ru
620990, Yekaterinburg, Russia

R. Abashev

Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences; Ural Federal University named after the first President of Russia B.N. Yeltsin

Email: kalinkin@ihim.uran.ru
620990, Yekaterinburg, Russia; 620002, Yekaterinburg, Russia

A. Surdo

Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences

Email: kalinkin@ihim.uran.ru
620990, Yekaterinburg, Russia

N. Medvedeva

Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences

Email: kalinkin@ihim.uran.ru
620990, Yekaterinburg, Russia

D. Kellerman

Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences

Autor responsável pela correspondência
Email: kalinkin@ihim.uran.ru
620990, Yekaterinburg, Russia

Bibliografia

  1. Abdel Rahman R.O., Hung Y.T. // Water. 2020. V. 12. P. 19. https://doi.org/10.3390/w12010019
  2. Pyshkina M.D., Nikitenko V.O., Zhukovsky M.V., Ekidin A.A. // AIP Conf. Proc. 2019. V. 2174. P. 020158. https://doi.org/10.1063/1.5134309
  3. Noor N.M., Fadzil M.S.A., Ung N. et al. // Radiat. Phys. Chem. 2016. V. 126. P. 56. https://doi.org/10.1016/j.radphyschem.2016.05.001
  4. Rivera T. // Appl. Radiat. Isot. 2012. V. 71. P. 30. https://doi.org/10.1016/j.radphyschem.2016.05.001
  5. Sears D.W., Sears H., Sehlke A., Hughes S.S. // J. Volcanol. Geotherm. Res. 2018. V. 349. P. 74. https://doi.org/10.1016/j.jvolgeores.2017.09.022
  6. Miyahara M.M., Sugi E., Katoh T. et al. // Radiat. Phys. Chem. 2012. V. 81. P. 705. https://doi.org/10.1016/j.jvolgeores.2017.09.022
  7. Ivanov S.A., Stash A.I., Bush A.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 588. https://doi.org/10.1134/S0036023622050096
  8. Sidorov A.I., Kirpichenko D.A., Yurina U.V., Podsvi-rov O.A. // Glass Phys. Chem. 2021. V. 47. P. 118. https://doi.org/10.1134/S1087659621020140
  9. Antonov-Romanovsky V.V. // J. Phys. Radium. 1956. V. 17. P. 694. https://hal.archives-ouvertes.fr/jpa-00234423
  10. Menon S.N., Singh A.K., Kadam S. et al. // J. Food Proc. Preserv. 2019. V. 43. P. 13891. https://doi.org/10.1111/jfpp.13891
  11. Guo J., Tang Q., Zhang C. et al. // J. Rare Earths. 2017. V. 35. P. 525. https://doi.org/10.1016/S1002-0721(17)60943-8
  12. Gieszczyk W., Bilski P., Kłosowski M. et al. // Radiat. Measur. 2018. V. 113. P. 14. https://doi.org/10.1016/j.radmeas.2018.03.007
  13. Palan C.B., Bajaj N.S., Soni A., Omanwar S.K. // Bull. Mater Sci. 2016. V. 39. P. 1157. https://doi.org/10.1007/s12034-016-1261-4
  14. Dhabekar B., Menon S.N., Raja E.A. et al. // Nucl. Instr. Methods Phys. B. 2011. V. 269. P. 1844. https://doi.org/10.1016/j.nimb.2011.05.001
  15. Bajaj N.S., Palan C.B., Koparkar K.A. et al. // J. Lumines. 2016. V. 175. P. 9. https://doi.org/10.1016/j.jlumin.2016.02.003
  16. Chougaonkar M.P., Kumar M., Bhatt B.C. // Int. J. Lum. Appl. 2012. V. 2. P. 194.
  17. Keskin I.Ç., Türemis M., Katı M.I. et al. // J. Lumines. 2020. V. 225. P. 117276. https://doi.org/10.1016/j.jlumin.2020.117276
  18. Kellerman D.G., Kalinkin M.O., Abashev R.M. et al. // Phys. Chem. Chem. Phys. 2020. V. 22. P. 27632. https://doi.org/10.1039/d0cp05185c
  19. Kalinkin M.O., Akulov D.A., Medvedeva N.I. et al. // Mater. Today Com. 2022. V. 31. P. 103346. https://doi.org/10.1016/j.mtcomm.2022.103346
  20. Modak P., Modak B. // Phys. Chem. Chem. Phys. 2020. V. 22. P. 16244. https://doi.org/10.1039/D0CP02425B
  21. Kellerman D.G., Medvedeva N.I., Kalinkin M.O. et al. // J. Alloys Compd. 2018. V. 766. P. 626. https://doi.org/10.1016/j.jallcom.2018.06.328
  22. Kalinkin M.O., Abashev R.M., Zabolotskaya E.V. et al. // Mater Res. Express. 2019. V. 6. P. 046206. https://doi.org/10.1088/2053-1591/aafd3e
  23. Peng Y.M., Su Y.-K., Yang R.-Y. // Mater. Res. Bull. 2013. V. 48. P. 1946. https://doi.org/10.1016/j.materresbull.2013.01.039
  24. Su Y.-K., Peng Y.M., Yang R.-Y., Chen J.-L. // Opt. Mater. 2012. V. P. 1598. https://doi.org/10.1016/j.optmat.2012.03.019
  25. Kresse G., Joubert D. // Phys. Rev. B. 1999. V. 59. P. 1758. https://doi.org/10.1103/PhysRevB.59.1758
  26. Kresse G., Furthmuller J. // Phys. Rev. B. 1996. V. 54. P. 11169. https://doi.org/10.1103/PhysRevB.54.11169
  27. Perdew J.P., Burke S., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. P. 3865. https://doi.org/10.1103/PhysRevLett.77.3865
  28. Monkhorst H.J., Pack J.D. // Phys. Rev. B: Solid State. 1976. V. 13. P. 5188. https://doi.org/10.1103/PhysRevB.13.5188
  29. Ben Yahia H., Shikano M., Takeuch T. et al. // J. Mater. Chem. A. 2014. V. 2. P. 5858. https://doi.org/10.1039/c3ta15264b
  30. Berger T., Hajek M. // Radiat. Measur. 2008. V. 43. P. 146. https://doi.org/10.1016/j.radmeas.2007.10.029
  31. Kumar V., Nagarajan R. // Chem. Phys. Lett. 2012. V. 530. P. 98. https://doi.org/10.1016/j.cplett.2012.02.021
  32. Hanic F., Handlovic M., Burdova K., Majling J. // J. Crystallogr. Spectrosc. Res. 1982. V. 12. P. 99. https://doi.org/10.1007/BF01161009
  33. Zimina G.V., Tsygankova M., Sadykova M. et al. // MRS Advances. 2018. V. 3. P. 1309. https://doi.org/10.1557/adv.2017.622

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (166KB)
3.

Baixar (979KB)
4.

Baixar (122KB)
5.

Baixar (756KB)

Declaração de direitos autorais © М.О. Калинкин, Д.А. Акулов, О.И. Гырдасова, Р.М. Абашев, А.И. Сюрдо, Н.И. Медведева, Д.Г. Келлерман, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies