CVD Synthesis of Graphitic Carbon Nitride Films from Melamine

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A CVD technique has been developed for the deposition of homogeneous graphitic carbon nitride films on silicon and quartz glass substrates using melamine as a precursor. Layer-by-layer deposition at low precursor loadings makes it possible to deposit a film up to 1.4 µm thick; however, it is possible to achieve large thicknesses by multiple repetition of the experimental cycle. The effect of synthesis parameters on the surface morphology of deposited layers has been studied by scanning electron microscopy. The chemical composition and structure of graphitic carbon nitride films are confirmed by a set of spectroscopic methods and X-ray diffraction. The optical properties have been studied using diffuse reflectance spectroscopy. Scanning electron microscopy and X-ray diffraction analysis have shown that films deposited at temperatures of 550–650°C have a layered microcrystalline structure. The bandgap of the obtained samples was 2.76–2.93 eV.

Sobre autores

E. Ermakova

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: ermakova@niic.nsc.ru
630090, Novosibirsk, Russia

E. Maksimovskii

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: ermakova@niic.nsc.ru
630090, Novosibirsk, Russia

I. Yushina

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: ermakova@niic.nsc.ru
630090, Novosibirsk, Russia

M. Kosinova

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Autor responsável pela correspondência
Email: ermakova@niic.nsc.ru
630090, Novosibirsk, Russia

Bibliografia

  1. Liu Y.Y., Cohen M.L. // Science. 1989. V. 245. P. 841. https://doi.org/10.1126/science.245.4920.841
  2. Deng X., Hattori T., Umehara N. et al. // Thin Solid Films. 2017. V. 621. P. 12. https://doi.org/10.1016/j.tsf.2016.11.025
  3. Contreras E., Bolívar F., Gómez M.A. // Surf. Coat. Technol. 2017. V. 332. P. 414. https://doi.org/10.1016/j.surfcoat.2017.05.095
  4. Liu X., Umehara N., Tokoroyama T. et al. // Tribol. Int. 2019. V. 131. P. 102. https://doi.org/10.1016/j.triboint.2018.10.022
  5. Li X., Xing M. // Comput. Mater. Sci. 2019. V. 158. P. 170. https://doi.org/10.1016/j.commatsci.2018.11.004
  6. Wu Q., Qianku Hu Q, Hou Y. et al. // J. Phys.: Condens. Matter. 2018. V. 30. P. 385402. https://doi.org/10.1088/1361-648X/aada2c
  7. Du J., Li X. // J. Alloys Compd. 2020. V. 815. P. 152324. https://doi.org/10.1016/j.jallcom.2019.152324
  8. Khanis N.H., Ritikos R., Kamal S.A.A. et al. // Materials. 2017. V. 10. P. 102. https://doi.org/10.3390/ma10020102
  9. Kovacevic E., Strunskus T., Santhosh N.M. et al. // Carbon. 2021. V. 184. P. 82. https://doi.org/10.1016/j.carbon.2021.08.008
  10. Fina F., Callear S.K., Carins G.M. et al. // Chem. Mater. 2015. V. 27. P. 2612. https://doi.org/10.1021/acs.chemmater.5b00411
  11. Dong G., Zhang Y., Pan Q. et al. // J. Photochem. Photobiol. C. 2014. V. 20. P. 33. https://doi.org/10.1016/j.jphotochemrev.2014.04.002
  12. Fu J., Yu J., Jiang C. et al. // Adv. Energy Mater. 2018. V. 8. P. 1701503. https://doi.org/10.1002/aenm.201701503
  13. Козлов Д.А., Артамонов К.А., Ревенко А.О. и др. // Журн. неорган. химии. 2022. Т. 67. № 5. С. 646. https://doi.org/10.31857/S0044457X22050105
  14. Fidan T., Torabfam M., Saleem Q. et al. // Adv. Energy Sustain. Res. 2021. V. 2. P. 3. https://doi.org/10.1002/aesr.202000073
  15. Peng G., Xing L., Barrio J. et al. // Angew. Chem. 2018. V. 57. P. 1186. https://doi.org/10.1002/anie.201711669
  16. Darkwah W.K., Ao Y. // Nanoscale Res. Lett. 2018. V. 13. P. 388. https://doi.org/10.1186/s11671-018-2702-3
  17. Guo W., Ming S., Chen Z. et al. // ChemElectroChem. 2018. V. 5. P. 3383. https://doi.org/10.1002/celc.201801045
  18. Majumder S. // Micro and Nano Technologies: Nanostructured Materials for Visible Light Photocatalysis. Amsterdam: Elsevier, 2022. P. 47. https://doi.org/10.1016/j.matlet.2014.08.078
  19. Wang J., Miller D.R., Gillan E.G. // Chem. Commun. 2002. P. 2258. https://doi.org/10.1039/B207041C
  20. Yadav R.M., Kumar R., Aliyan A. // New J. Chem. 2020. V. 44. P. 2644. https://doi.org/10.1039/C9NJ05108B
  21. Thomas A., Fischer A., Goettmann F. // J. Mater. Chem. 2008. V. 18. P. 4893. https://doi.org/10.1039/B800274F
  22. Sattler A., Pagano S., Zeuner M. // Chem. Eur. J. 2009. V. 15. P. 13161. https://doi.org/10.1002/chem.200901518
  23. Hong Y., Li C., Li D. et al. // Nanoscale. 2017. V. 9. P. 14 103. https://doi.org/10.1039/C7NR05155G
  24. Vu N.N., Nguyen C.C., Kaliaguine S. et al. // ChemSusChem. 2018. V. 12. P. 291. https://doi.org/10.1002/cssc.201802394
  25. Vasilchenko D., Zhurenok A., Saraev A. et al. // Chem. Eng. J. 2022. V. 445. P. 136721. https://doi.org/10.1016/j.cej.2022.136721
  26. Miller T.S., Belen Jorge A., Suter T.M. et al. // Phys. Chem. Chem. Phys. 2017. V. 19. P. 15613. https://doi.org/10.1039/C7CP02711G
  27. Durairaj A., Sakthivel T., Ramanathan S. et al. // ACS Omega. 2019. V. 4. P. 6476. https://doi.org/10.1021/acsomega.8b03279
  28. Dongmei He, Du L., Wang K. et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 1986. https://doi.org/10.1134/S0036023621130040
  29. Zhang Y.M., An C.W., Zhang D.F. et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 679. https://doi.org/10.1134/S0036023621050223
  30. Сериков Т.М., Ибраев Н.Х., Исайкина О.Я. и др. // Журн. неорган. химии. 2021. Т. 66. № 1. С. 107. https://doi.org/10.31857/S0044457X21010074
  31. Cesaria M., Caricato A.P., Martino M. // Appl. Phys. Lett. 2014. V. 105. P. 031105. https://doi.org/10.1063/1.4890675
  32. Reddy K.R., Reddy C.H.V., Nadagouda M.N. et al. // J. Environ. Manage. 2019. V. 238. P. 25. https://doi.org/10.1016/j.jenvman.2019.02.075
  33. Dubov O., Marcé J.G., Fortuny A. et al. // J. Mater. Sci. 2022. V. 57. P. 4970. https://doi.org/10.1007/s10853-022-06906-5
  34. Kang Y., Yang Y., Yin L.C. et al. // Adv. Mater. 2015. V. 27. P. 4572. https://doi.org/10.1002/adma.201501939

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (149KB)
3.

Baixar (1MB)
4.

Baixar (509KB)

Declaração de direitos autorais © Е.Н. Ермакова, Е.А. Максимовский, И.В. Юшина, М.Л. Косинова, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies