Influence of the Structure of Taurine N-Derivatives on Their Complexing Properties

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The paper presents data on the synthesis and study of the acid–base and complexing properties of N-hydroxyalkyl taurine derivatives. The ammonium group dissociation constants of the reagents were determined. The complex formation of taurine derivatives with transition and alkaline-earth metal ions was studied. Trends in the influence of the structure of ligands on the stability constants of their transition and alkaline-earth metal complexes were elucidated. In most cases, the studied ligands form most stable complexes with copper(II) ions. The decrease in amino group basicity in response to the incorporation of additional hydroxyl and/or sulfoethyl groups into a derivative leads to the differentiation of the ligand properties toward the studied ions. The data of this work can help expand the application range of the studied ligands, which can potentially be used as components of buffer solutions where there is the need to avoid or minimize complex formation in solution.

Sobre autores

G. Zharkov

Yeltsin Ural Federal University

Email: gennady.zharkov@mail.ru
620002, Yekaterinburg, Russia

E. Bueva

Yeltsin Ural Federal University

Email: gennady.zharkov@mail.ru
620002, Yekaterinburg, Russia

O. Filimonova

Yeltsin Ural Federal University

Email: gennady.zharkov@mail.ru
620002, Yekaterinburg, Russia

Yu. Petrova

Yeltsin Ural Federal University

Email: gennady.zharkov@mail.ru
620002, Yekaterinburg, Russia

E. Chirtulova

Yeltsin Ural Federal University

Email: gennady.zharkov@mail.ru
620002, Yekaterinburg, Russia

E. Zemlyakova

Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences

Email: gennady.zharkov@mail.ru
620990, Yekaterinburg, Russia

A. Pestov

Yeltsin Ural Federal University; Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences

Email: gennady.zharkov@mail.ru
620002, Yekaterinburg, Russia; 620990, Yekaterinburg, Russia

L. Neudachina

Yeltsin Ural Federal University

Autor responsável pela correspondência
Email: gennady.zharkov@mail.ru
620002, Yekaterinburg, Russia

Bibliografia

  1. Haque A., Ilmi R., Al-Busaidi I.J. et al. // Coord. Chem. Rev. 2017. V. 350. P. 320. https://doi.org/10.1016/j.ccr.2017.07.008
  2. Jain A. // Coord. Chem. Rev. 2019. V. 401. P. 213067. https://doi.org/10.1016/j.ccr.2019.213067
  3. Gridchin S.N., Nikol’skii V.M. // Russ. J. Physic. Chem. A. 2021. V. 95. № 10. P. 2174. https://doi.org/10.1134/S0036024421100095
  4. Gridchin S.N., Nikol’skii V.M. // Russ. J. Physic. Chem. A. 2021. V. 95. № 1. P. 80. https://doi.org/10.1134/S0036024421010106
  5. Gridchin S.N. // Russ. J. Physic. Chem. A. 2022. V. 96. № 4. P. 732. https://doi.org/10.1134/S0036024422040100
  6. Chen C., Xia S., He J. et al. // Life. Sci. 2019. V. 231. P. 116584. https://doi.org/10.1016/j.lfs.2019.116584
  7. Jakaria M., Azam S., Haque Md.E. et al. // Redox. Biol. 2019. V. 24. P. 101223. https://doi.org/10.1016/j.redox.2019.101223
  8. Grygorenko O.O., Biitseva A.V., Zhersh S. // Tetrahedron. 2018. V. 74. № 13. P. 1355. https://doi.org/10.1016/j.tet.2018.01.033
  9. Good N.E., Winget G.D., Winter W. et al. // Biochemistry. 1966. V. 5. № 2. P. 467. https://doi.org/10.1021/bi00866a011
  10. Good N.E., Izawa S. // Methods in Enzymology 1972. V. 24. P. 53. https://doi.org/10.1016/0076-6879(72)24054-X
  11. Huang M., Song J., Lu B. et al. // Acta Pharm. Sin. B. 2014. V. 4. № 6. P. 447. https://doi.org/10.1016/j.apsb.2014.10.006
  12. Wang T., Ma H., Padelford J.W. et al. // Electrochim. Acta. 2018. V. 282. P. 369. https://doi.org/10.1016/j.electacta.2018.06.067
  13. Elemike E.E., Dare E.O., Samuel I.D. et al. // J. Appl. Res. Technol. 2016. V. 14. № 1. P. 38. https://doi.org/10.1016/j.jart.2015.12.001
  14. Wang H., Meng X., Fan C. et al. // J. Mol. Struct. 2016. V. 1107. P. 25. https://doi.org/10.1016/j.molstruc.2015.11.035
  15. Anwar Z.M., Azab H.A. // J. Chem. Eng. Data. 2001. V. 46. № 1. P. 34. https://doi.org/10.1021/je0000625
  16. Azab H.A., Abou El-Nour K.M., Sorror S.H. // J. Chem. Eng. Data. 2007. V. 52. № 2. P. 381. https://doi.org/10.1021/je060319k
  17. Kirillov A.M., Coelho J.A.S., Kirillova M.V. et al. // J. Inorg. Chem. 2010. V. 49. № 14. P. 6390. https://doi.org/10.1021/ic1007999
  18. Kirillova M.V., Kirillov A.M., Martins A.N.C. et al. // J. Inorg. Chem. 2012. V. 51. № 9. P. 5224. https://doi.org/10.1021/ic300123d
  19. Petrova Yu.S., Neudachina L.K. // Russ. J. Inorg. Chem. 2013. V. 58. № 5. P. 617. https://doi.org/10.1134/S0036023613050173
  20. EL-Gahami M.A., Al-Bogami A.S., Albishri H.M. // J. Mol. Liq. 2014. V. 193. P. 45. https://doi.org/10.1016/j.molliq.2013.12.016
  21. Taha M., Gupta B.S., Lee M.-J. // J. Chem. Eng. Data. 2011. V. 56. № 9. P. 3541. https://doi.org/10.1021/je200345a
  22. Sokołowska M., Bal W. // J. Inorg. Biochem. 2005. V. 99. № 8. P. 1653. https://doi.org/10.1016/j.jinorgbio.2005.05.007
  23. Pope J.M., Stevens P.R., Angotti M.T. et al. // Anal. Biochem. 1980. V. 103. № 1. P. 214. https://doi.org/10.1016/0003-2697(80)90258-4
  24. Taha M., Saqr R.A., Ahmed A.T. // J. Chem. Thermodyn. 2007. V. 39. № 2. P. 304. https://doi.org/10.1016/j.jct.2006.06.012
  25. Zawisza I., Rózga M., Poznański J. et al. // J. Inorg. Biochem. 2013. V. 129. P. 58. https://doi.org/10.1016/j.jinorgbio.2013.08.012
  26. Zemlyakova E.O., Pestov A.V., Slepukhin P.A. et al. // Russ. J. Coord. Chem. 2018. V. 44. № 11. P. 667. https://doi.org/10.1134/S107032841811009X
  27. Solov’ev V.P., Baulin V.E., Strakhova N.N. et al. // J. Chem. Soc., Perkin Trans. 1998. № 6. P. 1489. https://doi.org/10.1039/a708245b
  28. Zharkov G.P., Filimonova O.V., Petrova Yu.S. et al. // Russ. Chem. Bul. 2022. V. 71. № 1. P. 152. https://doi.org/10.1007/s11172-022-3389-2
  29. Умланд Ф., Янсен А., Тириг Д. и др. // Комплексные соединения в аналитической химии. М.: Мир, 1975.
  30. Jiang Y.-M., Cai J.-H., Liu Z.-M. et al. // Acta Crystallogr Sect. E. Struct. Rep. Online. 2005. V. 61. № 5. P. M878. https://doi.org/10.1107/S1600536805010846
  31. Pearson R.G. // J. Am. Chem. Soc. 1963. V. 85. № 22. P. 3533. https://doi.org/10.1021/ja00905a001
  32. Irving H., Williams R.J.P. // J. Chem. Soc. 1953. P. 3192. https://doi.org/10.1039/jr9530003192
  33. Kotov A.V. // J. Anal. Chem. 1988. V. 43. № 5. P. 937.
  34. Nakon R., Krishnamoorthy C.R. // Science. 1983. V. 221. № 4612. P. 749. https://doi.org/10.1126/science.6879173
  35. Wyrzykowski D., Pilarski B., Jacewicz D. et al. // J. Therm. Anal. Calorim. 2013. V. 111. № 3. P. 1829. https://doi.org/10.1007/s10973-012-2593-y

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (13KB)
3.

Baixar (65KB)
4.

Baixar (6KB)
5.

Baixar (12KB)
6.

Baixar (11KB)
7.

Baixar (13KB)
8.

Baixar (10KB)
9.

Baixar (10KB)
10.

Baixar (11KB)
11.

Baixar (10KB)
12.

Baixar (10KB)
13.

Baixar (9KB)
14.

Baixar (13KB)

Declaração de direitos autorais © Г.П. Жарков, Е.И. Буева, О.В. Филимонова, Ю.С. Петрова, Е.А. Чиртулова, Е.О. Землякова, А.В. Пестов, Л.К. Неудачина, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies