Growth, X-ray Diffraction and Dielectric Characterization of Pb5WO8 Single Crystals in the PbO–WO3 System
- Autores: Bush A.A.1, Kozlov V.I.1, Stash A.I.2, Ivanov S.A.3,4
-
Afiliações:
- Russian Technological University (RTU MIREA)
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
- Department of Chemistry, Moscow State University
- Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences
- Edição: Volume 68, Nº 1 (2023)
- Páginas: 34-46
- Seção: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://journals.rcsi.science/0044-457X/article/view/136305
- DOI: https://doi.org/10.31857/S0044457X22600815
- EDN: https://elibrary.ru/GVADOV
- ID: 136305
Citar
Resumo
Single crystals of the Pb5WO8 phase were grown in the PbO–WO3 system by crystallization of (1 – x)PbO·xWO3 (x = 0.15–0.20) mixed melts. Thermogravimetric, X-ray diffraction, and dielectric studies of the single crystals were carried out. The phase melts at 712°С with decomposition to PbO and a liquid. The Pb5WO8 crystal structure is monoclinic (space group P21/n, 293 K) with the unit cell parameters a = 7.4430(1) Å, b = 12.1156(2) Å, c = 10.6284(2) Å, β = 90.658(1)°. The Pb5WO8 structure is retained at 100 K; the minor alterations in unit cell parameters are associated only with thermal expansion. The Pb5WO8 structure has a pronounced layered character; it appears as an alternation of layers formed of WO6 octahedra and strongly distorted PbO4 and PbO5 polyhedra in the direction [010]. A detailed crystal-chemical analysis of the structure was carried out. An important role of the Pb lone pair in the formation of characteristic voids in the structure was noted. The temperature-dependent dielectric permittivity and dielectric loss tangent feature relaxation peaks associated with lead and oxygen vacancies in the structure.
Sobre autores
A. Bush
Russian Technological University (RTU MIREA)
Email: aabush@yandex.ru
119454, Moscow, Russia
V. Kozlov
Russian Technological University (RTU MIREA)
Email: aabush@yandex.ru
119454, Moscow, Russia
A. Stash
Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
Email: aabush@yandex.ru
119334, Moscow, Russia
S. Ivanov
Department of Chemistry, Moscow State University; Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences
Autor responsável pela correspondência
Email: aabush@yandex.ru
119991, Moscow, Russia; 119991, Moscow, Russia
Bibliografia
- Chang L.L.Y. // J. Am. Ceram. Soc. 1971. V. 54. № 7. P. 357. https://doi.org/10.1111/j.1151-2916.1971.tb12316.x
- Jantz S.G., Pielnhofer F., Höppe H.A. // Z. Kristallogr. 2020. V. 235. № 8–9. P. 311. https://doi.org/10.1515/zkri-2020-0041
- Artner C., Weil M.J. // Solid State Chem. 2013. V. 199. P. 240. https://doi.org/10.1016/j.jssc.2012.12.007
- Annenkov A.A., Korzhik M.V., Lecoq P. // Nucl. Instrum. Methods Phys. Res., Sect. A. 2002. V. A490. P. 30. https://doi.org/10.1016/S0168-9002(02)00916-6
- Huhtinen M., Lecomte P., Luckey D. et al. Nuclear Instruments and Methods in Physics Research: Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2006. V. A545. P. 63. https://doi.org/10.1016/j.nima.2005.01.304
- Auffray E. // IEEE Transactions on Nuclear Science. 2008. V. 55. P. 1314. https://doi.org/10.1109/TNS.2007.913935
- Adzic P., Almeida N., Andelin D. et al. // J. Instrumentation. 2020. V. 5. P. 03010. https://doi.org/10.1088/1748-0221/5/03/P03010
- Fujita T., Muramatsu K. // Mater. Res. Bull. 1979. V. 14. P. 5. https://doi.org/10.1016/0025-5408(79)90224-1
- Jantz S.G., Pielnhofer F., Dialer M., Höppe H.A. // Z. Anorg. Allg. Chem. 2017. V. 643. P. 2031. https://doi.org/10.1002/zaac.201700335
- Powder Diffraction files of the International Centre for Diffraction Data (ICDD). 1999.
- Perry D.L., Wilkinson T.J. // Appl. Phys. A: Materials Science & Processing. 2007. V. 89. № 1. P. 77. https://doi.org/10.1007/s00339-007-4073-y
- APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA, 2019.
- Sheldrick G.M. // Acta Crystallogr., Sect. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
- Momma K., Izumi F. // J. Appl. Crystallogr. 2011. V. 44. P. 1272. https://doi.org/10.1107/S0021889811038970
- Razzazi V., Alaei S. // Chinese Phys. 2017. V. B26. P. 116501. https://doi.org/10.1088/1674-1056/26/11/116501
- Sorrell C.A. // J. Am. Ceram. Soc. 1970. V. 53. P. 55. https://doi.org/10.1111/j.1151-2916.1970.tb15964.x
- Shannon R.D. // Acta Crystallogr., Sect. B. 1976. V. 32. P. 751. https://doi.org/10.1107/S0567739476001551
- Salje E. // Acta Crystallogr. 1977. V. B33. P. 574. https://doi.org/10.1107/S0567740877004130
- Diehl R., Brandt G., Salje E. // Acta Crystallogr. 1978. V. B34. P. 1105. https://doi.org/10.1107/S0567740878005014
- Brese N., O’Keeffe M. // Acta Crystallogr. 1991. V. B47. P. 192. https://doi.org/10.1107/S0108768190011041
- Brown I.D. Structure and Bonding in Crystals. V. 2. N.Y.: Academic Press, 1981. P. 49.
- Сийдра О.И. Кристаллохимия кислородсодержащих минералов и неорганических соединений низковалентных катионов таллия, свинца и висмута. Автореф. дис. … докт. геол.-мин. наук. СПб., 2016. 25 с.
- Кривовичев С.В. Кристаллохимия минералов и неорганических соединений с комплексами анионоцентрированных тетраэдров. СПб.: Изд-во СПб. ун-та 2001, 198 с.
- Krivovichev S.V. Structural Mineralogy and Inorganic Crystal Chemistry. St. Petersburg University Press, 2009. 398 p.
- Müller U. Inorganic Structural Chemistry. John Wiley & Sons Ltd, 2006. https://doi.org/10.1002/9780470057278
- Уэллс А. Структурная неорганическая химия: В 3-х т. Перевод с англ. М.: Мир, 1987.
- Бокий Г.Б. Кристаллохимия. М.: Наука, 1971. 400 с.
- Gillespie R.J. Molecular Geometry. London: Van Nostrand Reinhold, 1972.
- Гиллеспи Р., Харгиттаи И. Модель отталкивания электронных пар валентной оболочки и строение молекул. М.: Мир, 1992. 296 с.
- Партэ Э. Некоторые главы структурной неорганической химии. Пер. с англ. M.: Мир, 1993. 144 с.
- Асланов Л.А. Структуры веществ. М.: Изд-во Моск. ун-та, 1989. 161 с.
- Matar S.F., Galy J. // Prog. Solid State Chem. 2015. V. 43. P. 82. https://doi.org/10.1016/j.progsolidstchem.2015.05.001
- Balic Zunic T., Vickovic I. // J. Appl. Crystallogr. 1996. V. 29. P. 305. https://doi.org/10.1107/S0021889895015081
- Gagné O.C., Hawthorne F.C. // Acta Crystallogr. 2018. V. B74. P. 63. https://doi.org/10.1107/S2052520617017437
- Siidra O.I., Krivovichev S.V., Filatov S.K. // Z. Kristallogr. 2008. V. 223. P. 114. https://doi.org/10.1524/zkri.2008.0009
- Nihtianova D.D., Ivanov V.T., Yamakov V.I. // Z. Kristallogr. 1997. V. 212. P. 191. https://doi.org/10.1524/zkri.1997.212.3.191
- Веневцев Ю.Н., Политова Е.Д., Иванов С.А. Сегнето- и антисегнетоэлектрики семейства титаната бария. М.: Химия, 1985. 256 с.
- Jonscher A.K. Dielectric Relaxation in Solids. London: Chelsea Dielectric Press, 1983. 380 p.
- Bidault O., Goux P., Kchikech M. et al. // Phys. Rev. 1994. V. 49B. № 12. P. 7868. https://doi.org/10.1103/PhysRevB.49.7868
- Kang B.S., Choi S.K., Park C.H. // J. Appl. Phys. 2003. V. 94. № 3. P. 1904. https://doi.org/10.1063/1.1589595
Arquivos suplementares
