Growth, X-ray Diffraction and Dielectric Characterization of Pb5WO8 Single Crystals in the PbO–WO3 System
- Authors: Bush A.A.1, Kozlov V.I.1, Stash A.I.2, Ivanov S.A.3,4
-
Affiliations:
- Russian Technological University (RTU MIREA)
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
- Department of Chemistry, Moscow State University
- Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences
- Issue: Vol 68, No 1 (2023)
- Pages: 34-46
- Section: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://journals.rcsi.science/0044-457X/article/view/136305
- DOI: https://doi.org/10.31857/S0044457X22600815
- EDN: https://elibrary.ru/GVADOV
- ID: 136305
Cite item
Abstract
Single crystals of the Pb5WO8 phase were grown in the PbO–WO3 system by crystallization of (1 – x)PbO·xWO3 (x = 0.15–0.20) mixed melts. Thermogravimetric, X-ray diffraction, and dielectric studies of the single crystals were carried out. The phase melts at 712°С with decomposition to PbO and a liquid. The Pb5WO8 crystal structure is monoclinic (space group P21/n, 293 K) with the unit cell parameters a = 7.4430(1) Å, b = 12.1156(2) Å, c = 10.6284(2) Å, β = 90.658(1)°. The Pb5WO8 structure is retained at 100 K; the minor alterations in unit cell parameters are associated only with thermal expansion. The Pb5WO8 structure has a pronounced layered character; it appears as an alternation of layers formed of WO6 octahedra and strongly distorted PbO4 and PbO5 polyhedra in the direction [010]. A detailed crystal-chemical analysis of the structure was carried out. An important role of the Pb lone pair in the formation of characteristic voids in the structure was noted. The temperature-dependent dielectric permittivity and dielectric loss tangent feature relaxation peaks associated with lead and oxygen vacancies in the structure.
About the authors
A. A. Bush
Russian Technological University (RTU MIREA)
Email: aabush@yandex.ru
119454, Moscow, Russia
V. I. Kozlov
Russian Technological University (RTU MIREA)
Email: aabush@yandex.ru
119454, Moscow, Russia
A. I. Stash
Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
Email: aabush@yandex.ru
119334, Moscow, Russia
S. A. Ivanov
Department of Chemistry, Moscow State University; Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences
Author for correspondence.
Email: aabush@yandex.ru
119991, Moscow, Russia; 119991, Moscow, Russia
References
- Chang L.L.Y. // J. Am. Ceram. Soc. 1971. V. 54. № 7. P. 357. https://doi.org/10.1111/j.1151-2916.1971.tb12316.x
- Jantz S.G., Pielnhofer F., Höppe H.A. // Z. Kristallogr. 2020. V. 235. № 8–9. P. 311. https://doi.org/10.1515/zkri-2020-0041
- Artner C., Weil M.J. // Solid State Chem. 2013. V. 199. P. 240. https://doi.org/10.1016/j.jssc.2012.12.007
- Annenkov A.A., Korzhik M.V., Lecoq P. // Nucl. Instrum. Methods Phys. Res., Sect. A. 2002. V. A490. P. 30. https://doi.org/10.1016/S0168-9002(02)00916-6
- Huhtinen M., Lecomte P., Luckey D. et al. Nuclear Instruments and Methods in Physics Research: Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2006. V. A545. P. 63. https://doi.org/10.1016/j.nima.2005.01.304
- Auffray E. // IEEE Transactions on Nuclear Science. 2008. V. 55. P. 1314. https://doi.org/10.1109/TNS.2007.913935
- Adzic P., Almeida N., Andelin D. et al. // J. Instrumentation. 2020. V. 5. P. 03010. https://doi.org/10.1088/1748-0221/5/03/P03010
- Fujita T., Muramatsu K. // Mater. Res. Bull. 1979. V. 14. P. 5. https://doi.org/10.1016/0025-5408(79)90224-1
- Jantz S.G., Pielnhofer F., Dialer M., Höppe H.A. // Z. Anorg. Allg. Chem. 2017. V. 643. P. 2031. https://doi.org/10.1002/zaac.201700335
- Powder Diffraction files of the International Centre for Diffraction Data (ICDD). 1999.
- Perry D.L., Wilkinson T.J. // Appl. Phys. A: Materials Science & Processing. 2007. V. 89. № 1. P. 77. https://doi.org/10.1007/s00339-007-4073-y
- APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA, 2019.
- Sheldrick G.M. // Acta Crystallogr., Sect. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
- Momma K., Izumi F. // J. Appl. Crystallogr. 2011. V. 44. P. 1272. https://doi.org/10.1107/S0021889811038970
- Razzazi V., Alaei S. // Chinese Phys. 2017. V. B26. P. 116501. https://doi.org/10.1088/1674-1056/26/11/116501
- Sorrell C.A. // J. Am. Ceram. Soc. 1970. V. 53. P. 55. https://doi.org/10.1111/j.1151-2916.1970.tb15964.x
- Shannon R.D. // Acta Crystallogr., Sect. B. 1976. V. 32. P. 751. https://doi.org/10.1107/S0567739476001551
- Salje E. // Acta Crystallogr. 1977. V. B33. P. 574. https://doi.org/10.1107/S0567740877004130
- Diehl R., Brandt G., Salje E. // Acta Crystallogr. 1978. V. B34. P. 1105. https://doi.org/10.1107/S0567740878005014
- Brese N., O’Keeffe M. // Acta Crystallogr. 1991. V. B47. P. 192. https://doi.org/10.1107/S0108768190011041
- Brown I.D. Structure and Bonding in Crystals. V. 2. N.Y.: Academic Press, 1981. P. 49.
- Сийдра О.И. Кристаллохимия кислородсодержащих минералов и неорганических соединений низковалентных катионов таллия, свинца и висмута. Автореф. дис. … докт. геол.-мин. наук. СПб., 2016. 25 с.
- Кривовичев С.В. Кристаллохимия минералов и неорганических соединений с комплексами анионоцентрированных тетраэдров. СПб.: Изд-во СПб. ун-та 2001, 198 с.
- Krivovichev S.V. Structural Mineralogy and Inorganic Crystal Chemistry. St. Petersburg University Press, 2009. 398 p.
- Müller U. Inorganic Structural Chemistry. John Wiley & Sons Ltd, 2006. https://doi.org/10.1002/9780470057278
- Уэллс А. Структурная неорганическая химия: В 3-х т. Перевод с англ. М.: Мир, 1987.
- Бокий Г.Б. Кристаллохимия. М.: Наука, 1971. 400 с.
- Gillespie R.J. Molecular Geometry. London: Van Nostrand Reinhold, 1972.
- Гиллеспи Р., Харгиттаи И. Модель отталкивания электронных пар валентной оболочки и строение молекул. М.: Мир, 1992. 296 с.
- Партэ Э. Некоторые главы структурной неорганической химии. Пер. с англ. M.: Мир, 1993. 144 с.
- Асланов Л.А. Структуры веществ. М.: Изд-во Моск. ун-та, 1989. 161 с.
- Matar S.F., Galy J. // Prog. Solid State Chem. 2015. V. 43. P. 82. https://doi.org/10.1016/j.progsolidstchem.2015.05.001
- Balic Zunic T., Vickovic I. // J. Appl. Crystallogr. 1996. V. 29. P. 305. https://doi.org/10.1107/S0021889895015081
- Gagné O.C., Hawthorne F.C. // Acta Crystallogr. 2018. V. B74. P. 63. https://doi.org/10.1107/S2052520617017437
- Siidra O.I., Krivovichev S.V., Filatov S.K. // Z. Kristallogr. 2008. V. 223. P. 114. https://doi.org/10.1524/zkri.2008.0009
- Nihtianova D.D., Ivanov V.T., Yamakov V.I. // Z. Kristallogr. 1997. V. 212. P. 191. https://doi.org/10.1524/zkri.1997.212.3.191
- Веневцев Ю.Н., Политова Е.Д., Иванов С.А. Сегнето- и антисегнетоэлектрики семейства титаната бария. М.: Химия, 1985. 256 с.
- Jonscher A.K. Dielectric Relaxation in Solids. London: Chelsea Dielectric Press, 1983. 380 p.
- Bidault O., Goux P., Kchikech M. et al. // Phys. Rev. 1994. V. 49B. № 12. P. 7868. https://doi.org/10.1103/PhysRevB.49.7868
- Kang B.S., Choi S.K., Park C.H. // J. Appl. Phys. 2003. V. 94. № 3. P. 1904. https://doi.org/10.1063/1.1589595
Supplementary files
